Abstract

Despite the considerable improvements witnessed over the last few decades in the feasibility and safety of allogeneic hematopoietic cell transplantation (allo-HCT) for hematological malignancies, disease relapse continues to represent a frequent occurrence, with largely unsatisfactory salvage options. Recent studies have shed new light on the biology of posttransplantation relapses, demonstrating that they can frequently be explained using an evolutionary perspective: The changes in disease clonal structure and immunogenicity that are often documented at relapse may in fact represent the end results of a process of selection, allowing the outgrowth of variants that are more capable of resisting the therapeutic control of allo-HCT. This review provides an overview of the mechanisms forming the basis of relapse, including clonal evolution, gain of tropism for privileged sites, genomic and nongenomic changes in the HLA asset, and enforcement of immune checkpoints. Finally, this review discusses how these mechanisms may combine in complex patterns and how understanding and untangling these interactions may provide key knowledge for the selection of personalized therapeutic approaches.

References

References
1.
Gooley
TA
,
Chien
JW
,
Pergam
SA
, et al
.
Reduced mortality after allogeneic hematopoietic-cell transplantation
.
N Engl J Med
.
2010
;
363
(
22
):
2091
-
2101
.
2.
Horowitz
M
,
Schreiber
H
,
Elder
A
, et al
.
Epidemiology and biology of relapse after stem cell transplantation
.
Bone Marrow Transplant
.
2018
;
53
(
11
):
1379
-
1389
.
3.
Nowell
PC
.
The clonal evolution of tumor cell populations
.
Science
.
1976
;
194
(
4260
):
23
-
28
.
4.
Ding
L
,
Ley
TJ
,
Larson
DE
, et al
.
Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing
.
Nature
.
2012
;
481
(
7382
):
506
-
510
.
5.
Greaves
M
,
Maley
CC
.
Clonal evolution in cancer
.
Nature
.
2012
;
481
(
7381
):
306
-
313
.
6.
Kolb
HJ
.
Graft-versus-leukemia effects of transplantation and donor lymphocytes
.
Blood
.
2008
;
112
(
12
):
4371
-
4383
.
7.
Bacher
U
,
Haferlach
T
,
Alpermann
T
, et al
.
Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML
.
Biol Blood Marrow Transplant
.
2010
;
16
(
12
):
1649
-
1657
.
8.
Waterhouse
M
,
Pfeifer
D
,
Pantic
M
,
Emmerich
F
,
Bertz
H
,
Finke
J
.
Genome-wide profiling in AML patients relapsing after allogeneic hematopoietic cell transplantation
.
Biol Blood Marrow Transplant
.
2011
;
17
(
10
):
1450
-
1459.e1
.
9.
Toffalori
C
,
Zito
L
,
Gambacorta
V
, et al
.
Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation
.
Nat Med
.
2019
;
25
(
4
):
603
-
611
.
10.
Quek
L
,
Ferguson
P
,
Metzner
M
, et al
.
Mutational analysis of disease relapse in patients allografted for acute myeloid leukemia
.
Blood Adv
.
2016
;
1
(
3
):
193
-
204
.
11.
Christopher
MJ
,
Petti
AA
,
Rettig
MP
, et al
.
Immune escape of relapsed AML cells after allogeneic transplantation
.
N Engl J Med
.
2018
;
379
(
24
):
2330
-
2341
.
12.
Jacoby
MA
,
Duncavage
EJ
,
Chang
GS
, et al
.
Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant
.
JCI Insight
.
2018
;
3
(
5
):
98962
.
13.
Christopeit
M
,
Badbaran
A
,
Alawi
M
, et al
.
Clonal evolution of myelofibrosis patients in relapse after allogeneic stem cell transplantation revealed by whole exome sequencing [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
2912
.
14.
Shem-Tov
N
,
Saraceni
F
,
Danylesko
I
, et al
.
Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse
.
Biol Blood Marrow Transplant
.
2017
;
23
(
7
):
1087
-
1094
.
15.
Ge
L
,
Ye
F
,
Mao
X
, et al
.
Extramedullary relapse of acute leukemia after allogeneic hematopoietic stem cell transplantation: different characteristics between acute myelogenous leukemia and acute lymphoblastic leukemia
.
Biol Blood Marrow Transplant
.
2014
;
20
(
7
):
1040
-
1047
.
16.
Harris
AC
,
Kitko
CL
,
Couriel
DR
, et al
.
Extramedullary relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes
.
Haematologica
.
2013
;
98
(
2
):
179
-
184
.
17.
Zeiser
R
,
Vago
L
.
Mechanisms of immune escape after allogeneic hematopoietic cell transplantation
.
Blood
.
2019
;
133
(
12
):
1290
-
1297
.
18.
Horowitz
MM
,
Gale
RP
,
Sondel
PM
, et al
.
Graft-versus-leukemia reactions after bone marrow transplantation
.
Blood
.
1990
;
75
(
3
):
555
-
562
.
19.
Falkenburg
JHF
,
Jedema
I
.
Graft versus tumor effects and why people relapse
.
Hematology (Am Soc Hematol Educ Program)
.
2017
;
2017
(
1
):
693
-
698
.
20.
Fleischhauer
K
,
Beelen
DW
.
HLA mismatching as a strategy to reduce relapse after alternative donor transplantation
.
Semin Hematol
.
2016
;
53
(
2
):
57
-
64
.
21.
Vago
L
,
Perna
SK
,
Zanussi
M
, et al
.
Loss of mismatched HLA in leukemia after stem-cell transplantation
.
N Engl J Med
.
2009
;
361
(
5
):
478
-
488
.
22.
Villalobos
IB
,
Takahashi
Y
,
Akatsuka
Y
, et al
.
Relapse of leukemia with loss of mismatched HLA resulting from uniparental disomy after haploidentical hematopoietic stem cell transplantation
.
Blood
.
2010
;
115
(
15
):
3158
-
3161
.
23.
Crucitti
L
,
Crocchiolo
R
,
Toffalori
C
, et al
.
Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation
.
Leukemia
.
2015
;
29
(
5
):
1143
-
1152
.
24.
McCurdy
SR
,
Iglehart
BS
,
Batista
DA
, et al
.
Loss of the mismatched human leukocyte antigen haplotype in two acute myelogenous leukemia relapses after haploidentical bone marrow transplantation with post-transplantation cyclophosphamide
.
Leukemia
.
2016
;
30
(
10
):
2102
-
2106
.
25.
Grosso
D
,
Johnson
E
,
Colombe
B
, et al
.
Acquired uniparental disomy in chromosome 6p as a feature of relapse after T-cell replete haploidentical hematopoietic stem cell transplantation using cyclophosphamide tolerization
.
Bone Marrow Transplant
.
2017
;
52
(
4
):
615
-
619
.
26.
Toffalori
C
,
Cavattoni
I
,
Deola
S
, et al
.
Genomic loss of patient-specific HLA in acute myeloid leukemia relapse after well-matched unrelated donor HSCT
.
Blood
.
2012
;
119
(
20
):
4813
-
4815
.
27.
Vago
L
,
Toffalori
C
,
Ahci
M
, et al
.
Incidence of HLA loss in a global multicentric cohort of post-transplantation relapses: results from the HLA Loss Collaborative Study [abtract]
.
Blood
.
2018
;
132
(
suppl 1
):
818
.
28.
Tsirigotis
P
,
Byrne
M
,
Schmid
C
, et al
.
Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies: a review from the ALWP of the EBMT
.
Bone Marrow Transplant
.
2016
;
51
(
11
):
1431
-
1438
.
29.
Ahci
M
,
Toffalori
C
,
Bouwmans
E
, et al
.
A new tool for rapid and reliable diagnosis of HLA loss relapses after HSCT
.
Blood
.
2017
;
130
(
10
):
1270
-
1273
.
30.
Vago
L
,
Ciceri
F
.
Choosing the alternative
.
Biol Blood Marrow Transplant
.
2017
;
23
(
11
):
1813
-
1814
.
31.
Imus
PH
,
Blackford
AL
,
Bettinotti
M
, et al
.
Major histocompatibility mismatch and donor choice for second allogeneic bone marrow transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
11
):
1887
-
1894
.
32.
Dermime
S
,
Mavroudis
D
,
Jiang
YZ
,
Hensel
N
,
Molldrem
J
,
Barrett
AJ
.
Immune escape from a graft-versus-leukemia effect may play a role in the relapse of myeloid leukemias following allogeneic bone marrow transplantation
.
Bone Marrow Transplant
.
1997
;
19
(
10
):
989
-
999
.
33.
Stevanović
S
,
van Schie
MLJ
,
Griffioen
M
,
Falkenburg
JH
.
HLA-class II disparity is necessary for effective T cell mediated graft-versus-leukemia effects in NOD/scid mice engrafted with human acute lymphoblastic leukemia
.
Leukemia
.
2013
;
27
(
4
):
985
-
987
.
34.
Fleischhauer
K
,
Shaw
BE
.
HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities
.
Blood
.
2017
;
130
(
9
):
1089
-
1096
.
35.
Wright
KL
,
Ting
JPY
.
Epigenetic regulation of MHC-II and CIITA genes
.
Trends Immunol
.
2006
;
27
(
9
):
405
-
412
.
36.
Knaus
HA
,
Berglund
S
,
Hackl
H
, et al
.
Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy
.
JCI Insight
.
2018
;
3
(
21
):
e120974
.
37.
Norde
WJ
,
Maas
F
,
Hobo
W
, et al
.
PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation
.
Cancer Res
.
2011
;
71
(
15
):
5111
-
5122
.
38.
Noviello
M
,
Manfredi
F
,
Ruggiero
E
, et al
.
Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT
.
Nat Commun
.
2019
;
10
(
1
):
1065
.
39.
Hutten
TJA
,
Norde
WJ
,
Woestenenk
R
, et al
.
Increased coexpression of PD-1, TIGIT, and KLRG-1 on tumor-reactive CD8+ T cells during relapse after allogeneic stem cell transplantation
.
Biol Blood Marrow Transplant
.
2018
;
24
(
4
):
666
-
677
.
40.
Davids
MS
,
Kim
HT
,
Bachireddy
P
, et al
;
Leukemia and Lymphoma Society Blood Cancer Research Partnership
.
Ipilimumab for patients with relapse after allogeneic transplantation
.
N Engl J Med
.
2016
;
375
(
2
):
143
-
153
.
41.
Merryman
RW
,
Kim
HT
,
Zinzani
PL
, et al
.
Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma
.
Blood
.
2017
;
129
(
10
):
1380
-
1388
.
42.
Haverkos
BM
,
Abbott
D
,
Hamadani
M
, et al
.
PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD
.
Blood
.
2017
;
130
(
2
):
221
-
228
.
43.
Garcia-Diaz
A
,
Shin
DS
,
Moreno
BH
, et al
.
Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression
.
Cell Reports
.
2017
;
19
(
6
):
1189
-
1201
.
44.
Arrieta-Bolaños
E
,
Fleischhauer
K
.
Learning the next-generation sequencing alphabet of immune reconstitution: factors determining CD8+ T-cell receptor α-chain repertoire dynamics after hematopoietic stem cell transplantation
.
Haematologica
.
2019
;
104
(
3
):
422
-
425
.
45.
Mathew
NR
,
Baumgartner
F
,
Braun
L
, et al
.
Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells
.
Nat Med
.
2018
;
24
(
3
):
282
-
291
.
46.
Prestipino
A
,
Emhardt
AJ
,
Aumann
K
, et al
.
Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
429
):
eaam7729
.
47.
Coelho
MA
,
de Carné Trécesson
S
,
Rana
S
, et al
.
Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA
.
Immunity
.
2017
;
47
(
6
):
1083
-
1099.e6
.
48.
Kortlever
RM
,
Sodir
NM
,
Wilson
CH
, et al
.
Myc cooperates with Ras by programming inflammation and immune suppression
.
Cell
.
2017
;
171
(
6
):
1301
-
1315.e14
.
49.
Liao
W
,
Overman
MJ
,
Boutin
AT
, et al
.
KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer
.
Cancer Cell
.
2019
;
35
(
4
):
559
-
572.e7
.
50.
Li
S
,
Garrett-Bakelman
FE
,
Chung
SS
, et al
.
Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia
.
Nat Med
.
2016
;
22
(
7
):
792
-
799
.
51.
Pinto
A
,
Maio
M
,
Attadia
V
,
Zappacosta
S
,
Cimino
R
.
Modulation of HLA-DR antigens expression in human myeloid leukaemia cells by cytarabine and 5-aza-2′-deoxycytidine [letter]
.
Lancet
.
1984
;
324
(
8407
):
867
-
868
.
52.
Yang
H
,
Bueso-Ramos
C
,
DiNardo
C
, et al
.
Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents
.
Leukemia
.
2014
;
28
(
6
):
1280
-
1288
.
53.
Platzbecker
U
,
Wermke
M
,
Radke
J
, et al
.
Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial
.
Leukemia
.
2012
;
26
(
3
):
381
-
389
.
54.
Craddock
C
,
Jilani
N
,
Siddique
S
, et al
.
Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial
.
Biol Blood Marrow Transplant
.
2016
;
22
(
2
):
385
-
390
.
You do not currently have access to this content.