Abstract

MRD technologies increase our ability to measure response in acute myeloid leukemia (AML) beyond the limitations of morphology. When applied in clinical trials, molecular and immunophenotypic MRD assays have improved prognostic precision, providing a strong rationale for their use to guide treatment, as well as to measure its effectiveness. Initiatives such as those from the European Leukemia Network now provide a collaborative knowledge-based framework for selection and implementation of MRD assays most appropriate for defined genetic subgroups. For patients with mutated-NPM1 AML, quantitative polymerase chain reaction (qPCR) monitoring of mutated-NPM1 transcripts postinduction and sequentially after treatment has emerged as a highly sensitive and specific tool to predict relapse and potential benefit from allogeneic transplant. Flow cytometric MRD after induction is prognostic across genetic risk groups and can identify those patients in the wild-type NPM1 intermediate AML subgroup with a very high risk for relapse. In parallel with these data, advances in genetic profiling have extended understanding of the etiology and the complex dynamic clonal nature of AML, as well as created the opportunity for MRD monitoring using next-generation sequencing (NGS). NGS AML MRD detection can stratify outcomes and has potential utility in the peri-allogeneic transplant setting. However, there remain challenges inherent in the NGS approach of multiplex quantification of mutations to track AML MRD. Although further development of this methodology, together with orthogonal testing, will clarify its relevance for routine clinical use, particularly for patients lacking a qPCR genetic target, established validated MRD assays can already provide information to direct clinical practice.

References

References
1.
Hourigan
CS
,
Gale
RP
,
Gormley
NJ
,
Ossenkoppele
GJ
,
Walter
RB
.
Measurable residual disease testing in acute myeloid leukaemia
.
Leukemia
.
2017
;
31
(
7
):
1482
-
1490
.
2.
Epstein-Peterson
ZD
,
Devlin
SM
,
Stein
EM
,
Estey
E
,
Tallman
MS
.
Widespread use of measurable residual disease in acute myeloid leukemia practice
.
Leuk Res
.
2018
;
67
:
92
-
98
.
3.
Ivey
A
,
Hills
RK
,
Simpson
MA
, et al
;
UK National Cancer Research Institute AML Working Group
.
Assessment of minimal residual disease in standard-risk AML
.
N Engl J Med
.
2016
;
374
(
5
):
422
-
433
.
4.
Balsat
M
,
Renneville
A
,
Thomas
X
, et al
.
Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the Acute Leukemia French Association Group
.
J Clin Oncol
.
2017
;
35
(
2
):
185
-
193
.
5.
Freeman
SD
,
Hills
RK
,
Virgo
P
, et al
.
Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations
.
J Clin Oncol
.
2018
;
36
(
15
):
1486
-
1497
.
6.
Freeman
SD
,
Virgo
P
,
Couzens
S
, et al
.
Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia
.
J Clin Oncol
.
2013
;
31
(
32
):
4123
-
4131
.
7.
Schuurhuis
GJ
,
Heuser
M
,
Freeman
S
, et al
.
Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party
.
Blood
.
2018
;
131
(
12
):
1275
-
1291
.
8.
U.S. Department of Health and Human Services
. Hematologic malignancies: regulatory considerations for use of minimal residual disease in development of drug and biological products for treatment. https://www.fda.gov/media/117035/download. Accessed 2 May 2019.
9.
Platzbecker
U
,
Middeke
JM
,
Sockel
K
, et al
.
Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial
.
Lancet Oncol
.
2018
;
19
(
12
):
1668
-
1679
.
10.
Selim
AG
,
Moore
AS
.
Molecular minimal residual disease monitoring in acute myeloid leukemia: challenges and future directions
.
J Mol Diagn
.
2018
;
20
(
4
):
389
-
397
.
11.
Grimwade
D
,
Lo Coco
F
.
Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia
.
Leukemia
.
2002
;
16
(
10
):
1959
-
1973
.
12.
Hoffmann
H
,
Thiede
C
,
Glauche
I
, et al
.
The prognostic potential of monitoring disease dynamics in NPM1-positive acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
6
):
1531
-
1534
.
13.
Höllein
A
,
Jeromin
S
,
Meggendorfer
M
, et al
.
Minimal residual disease (MRD) monitoring and mutational landscape in AML with RUNX1-RUNX1T1: a study on 134 patients
.
Leukemia
.
2018
;
32
(
10
):
2270
-
2274
.
14.
Martínez-Losada
C
,
Serrano-López
J
,
Serrano-López
J
, et al
.
Clonal genetic evolution at relapse of favorable-risk acute myeloid leukemia with NPM1 mutation is associated with phenotypic changes and worse outcomes
.
Haematologica
.
2018
;
103
(
9
):
e400
-
e403
.
15.
Höllein
A
,
Meggendorfer
M
,
Dicker
F
, et al
.
NPM1 mutated AML can relapse with wild-type NPM1: persistent clonal hematopoiesis can drive relapse
.
Blood Adv
.
2018
;
2
(
22
):
3118
-
3125
.
16.
Gaidzik
VI
,
Weber
D
,
Paschka
P
, et al
;
German-Austrian Acute Myeloid Leukemia Study Group (AMLSG)
.
DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia
.
Leukemia
.
2018
;
32
(
1
):
30
-
37
.
17.
Jongen-Lavrencic
M
,
Grob
T
,
Hanekamp
D
, et al
.
Molecular minimal residual disease in acute myeloid leukemia
.
N Engl J Med
.
2018
;
378
(
13
):
1189
-
1199
.
18.
Morita
K
,
Kantarjian
HM
,
Wang
F
, et al
.
Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia
.
J Clin Oncol
.
2018
;
36
(
18
):
1788
-
1797
.
19.
Ottone
T
,
Alfonso
V
,
Iaccarino
L
, et al
.
Longitudinal detection of DNMT3AR882H transcripts in patients with acute myeloid leukemia
.
Am J Hematol
.
2018
;
93
(
5
):
E120
-
E123
.
20.
Ferret
Y
,
Boissel
N
,
Helevaut
N
, et al
.
Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group
.
Haematologica
.
2018
;
103
(
5
):
822
-
829
.
21.
Ok
CY
,
Loghavi
S
,
Sui
D
, et al
.
Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia
.
Haematologica
.
2019
;
104
(
2
):
305
-
311
.
22.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
23.
Stein
EM
,
DiNardo
CD
,
Fathi
AT
, et al
.
Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib
.
Blood
.
2019
;
133
(
7
):
676
-
687
.
24.
Desai
P
,
Hassane
D
,
Roboz
GJ
.
Clonal hematopoiesis and risk of acute myeloid leukemia
.
Best Pract Res Clin Haematol
.
2019
;
32
(
2
):
177
-
185
.
25.
Kim
T
,
Moon
JH
,
Ahn
JS
, et al
.
Next-generation sequencing-based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse
.
Blood
.
2018
;
132
(
15
):
1604
-
1613
.
26.
Nakamura
S
,
Yokoyama
K
,
Shimizu
E
, et al
.
Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS
.
Blood
.
2019
;
133
(
25
):
2682
-
2695
.
27.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
28.
Parkin
B
,
Londoño-Joshi
A
,
Kang
Q
,
Tewari
M
,
Rhim
AD
,
Malek
SN
.
Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse
.
J Clin Invest
.
2017
;
127
(
9
):
3484
-
3495
.
29.
van Galen
P
,
Hovestadt
V
,
Wadsworth II
MH
, et al
.
Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
.
Cell
.
2019
;
176
(
6
):
1265
-
1281.e24
.
30.
Zeijlemaker
W
,
Kelder
A
,
Oussoren-Brockhoff
YJ
, et al
.
Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia
.
Leukemia
.
2016
;
30
(
3
):
708
-
715
.
31.
Cilloni
D
,
Renneville
A
,
Hermitte
F
, et al
.
Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study
.
J Clin Oncol
.
2009
;
27
(
31
):
5195
-
5201
.
32.
Maurillo
L
,
Buccisano
F
,
Spagnoli
A
, et al
.
Monitoring of minimal residual disease in adult acute myeloid leukemia using peripheral blood as an alternative source to bone marrow
.
Haematologica
.
2007
;
92
(
5
):
605
-
611
.
33.
Guénot
C
,
Lacombe
F
,
Allou
K
, et al
;
Groupe d’Etude Immunologique des Leucémies (GEIL)
.
Peripheral blood minimal/measurable residual disease assessed in flow cytometry in acute myeloblastic leukemia
.
Leukemia
.
2019
;
33
(
7
):
1814
-
1816
.
34.
Wong
HY
,
Sung
AD
,
Lindblad
KE
, et al
.
Molecular measurable residual disease testing of blood during AML cytotoxic therapy for early prediction of clinical response
.
Front Oncol
.
2019
;
8
:
669
.
35.
Duncavage
EJ
,
Uy
GL
,
Petti
AA
, et al
.
Mutational landscape and response are conserved in peripheral blood of AML and MDS patients during decitabine therapy
.
Blood
.
2017
;
129
(
10
):
1397
-
1401
.
36.
Buccisano
F
,
Dillon
R
,
Freeman
SD
,
Venditti
A
.
Role of minimal (measurable) residual disease assessment in older patients with acute myeloid leukemia
.
Cancers (Basel)
.
2018
;
10
(
7
):
10
.
37.
Ommen
HB
.
Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies
.
Ther Adv Hematol
.
2016
;
7
(
1
):
3
-
16
.
38.
Boddu
P
,
Gurguis
C
,
Sanford
D
, et al
.
Response kinetics and factors predicting survival in core-binding factor leukemia
.
Leukemia
.
2018
;
32
(
12
):
2698
-
2701
.
39.
Bibault
JE
,
Figeac
M
,
Hélevaut
N
, et al
.
Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia
.
Oncotarget
.
2015
;
6
(
26
):
22812
-
22821
.
40.
McMahon
CM
,
Ferng
T
,
Canaani
J
, et al
.
Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia [published online ahead of print 14 May 2019]
.
Cancer Discov
.
doi:10.1158/2159-8290.CD-18-1453
.
41.
Levis
MJ
,
Perl
AE
,
Altman
JK
, et al
.
A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations
.
Blood Adv
.
2018
;
2
(
8
):
825
-
831
.
42.
Schnittger
S
,
Schoch
C
,
Dugas
M
, et al
.
Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease
.
Blood
.
2002
;
100
(
1
):
59
-
66
.
43.
Zuffa
E
,
Franchini
E
,
Papayannidis
C
, et al
.
Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients
.
Oncotarget
.
2015
;
6
(
31
):
31284
-
31294
.
44.
Lin
MT
,
Tseng
LH
,
Dudley
JC
, et al
.
A novel tandem duplication assay to detect minimal residual disease in FLT3/ITD AML
.
Mol Diagn Ther
.
2015
;
19
(
6
):
409
-
417
.
45.
Blätte
TJ
,
Schmalbrock
LK
,
Skambraks
S
, et al
.
getITD for FLT3-ITD-based MRD monitoring in AML [published online ahead of print 14 May 2019]
.
Leukemia
.
doi:10.1038/s41375-019-0483-z
.
46.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
47.
Candoni
A
,
De Marchi
F
,
Zanini
F
, et al
.
Predictive value of pretransplantation molecular minimal residual disease assessment by WT1 gene expression in FLT3-positive acute myeloid leukemia
.
Exp Hematol
.
2017
;
49
:
25
-
33
.
48.
Mencia-Trinchant
N
,
Hu
Y
,
Alas
MA
, et al
.
Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations
.
J Mol Diagn
.
2017
;
19
(
4
):
537
-
548
.
49.
Thol
F
,
Gabdoulline
R
,
Liebich
A
, et al
.
Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML
.
Blood
.
2018
;
132
(
16
):
1703
-
1713
.
50.
Bhatnagar
B
,
Eisfeld
AK
,
Nicolet
D
, et al
.
Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia
.
Br J Haematol
.
2016
;
175
(
2
):
226
-
236
.
51.
Debarri
H
,
Lebon
D
,
Roumier
C
, et al
.
IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association
.
Oncotarget
.
2015
;
6
(
39
):
42345
-
42353
.
52.
Dillon
LW
,
Hayati
S
,
Roloff
GW
, et al
.
Targeted RNA-sequencing for the quantification of measurable residual disease in acute myeloid leukemia
.
Haematologica
.
2019
;
104
(
2
):
297
-
304
.
53.
Araki
D
,
Wood
BL
,
Othus
M
, et al
.
Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission?
J Clin Oncol
.
2016
;
34
(
4
):
329
-
336
.
54.
Buccisano
F
,
Maurillo
L
,
Spagnoli
A
, et al
.
Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia
.
Blood
.
2010
;
116
(
13
):
2295
-
2303
.
55.
Ravandi
F
,
Jorgensen
J
,
Borthakur
G
, et al
.
Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia
.
Cancer
.
2017
;
123
(
3
):
426
-
435
.
56.
Brüggemann
M
,
Schrauder
A
,
Raff
T
, et al
;
International Berlin-Frankfurt-Münster Study Group (I-BFM-SG)
.
Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008
.
Leukemia
.
2010
;
24
(
3
):
521
-
535
.
57.
Keeney
M
,
Wood
BL
,
Hedley
BD
, et al
.
A QA program for MRD testing demonstrates that systematic education can reduce discordance among experienced interpreters
.
Cytometry B Clin Cytom
.
2018
;
94
(
2
):
239
-
249
.
58.
Brooimans
RA
,
van der Velden
VHJ
,
Boeckx
N
, et al
.
Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: is multicentric MRD assessment feasible?
Leuk Res
.
2019
;
76
:
39
-
47
.
59.
Jentzsch
M
,
Bill
M
,
Nicolet
D
, et al
.
Prognostic impact of the CD34+/CD38− cell burden in patients with acute myeloid leukemia receiving allogeneic stem cell transplantation
.
Am J Hematol
.
2017
;
92
(
4
):
388
-
396
.
60.
Khan
N
,
Freeman
SD
,
Virgo
P
, et al
.
An immunophenotypic pre-treatment predictor for poor response to induction chemotherapy in older acute myeloid leukaemia patients: blood frequency of CD34+ CD38 low blasts
.
Br J Haematol
.
2015
;
170
(
1
):
80
-
84
.
61.
Terwijn
M
,
Zeijlemaker
W
,
Kelder
A
, et al
.
Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia
.
PLoS One
.
2014
;
9
(
9
):
e107587
.
62.
Pollyea
DA
,
Jordan
CT
.
Therapeutic targeting of acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1627
-
1635
.
63.
Zeijlemaker
W
,
Kelder
A
,
Oussoren-Brockhoff
YJ
, et al
.
A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia
.
Leukemia
.
2016
;
30
(
2
):
439
-
446
.
64.
Bradbury
C
,
Houlton
AE
,
Akiki
S
, et al
.
Prognostic value of monitoring a candidate immunophenotypic leukaemic stem/progenitor cell population in patients allografted for acute myeloid leukaemia
.
Leukemia
.
2015
;
29
(
4
):
988
-
991
.
65.
Zeijlemaker
W
,
Grob
T
,
Meijer
R
, et al
.
CD34+CD38 leukemic stem cell frequency to predict outcome in acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
5
):
1102
-
1112
.
66.
Boyd
AL
,
Aslostovar
L
,
Reid
J
, et al
.
Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence
.
Cancer Cell
.
2018
;
34
(
3
):
483
-
498.e5
.
67.
Ho
TC
,
LaMere
M
,
Stevens
BM
, et al
.
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression
.
Blood
.
2016
;
128
(
13
):
1671
-
1678
.
68.
Coustan-Smith
E
,
Song
G
,
Shurtleff
S
, et al
.
Universal monitoring of minimal residual disease in acute myeloid leukemia
.
JCI Insight
.
2018
;
3
(
9
): pii:98561.
69.
Kimball
AK
,
Oko
LM
,
Bullock
BL
,
Nemenoff
RA
,
van Dyk
LF
,
Clambey
ET
.
A beginner’s guide to analyzing and visualizing mass cytometry data
.
J Immunol
.
2018
;
200
(
1
):
3
-
22
.
70.
Hu
Z
,
Jujjavarapu
C
,
Hughey
JJ
, et al
.
MetaCyto: a tool for automated meta-analysis of mass and flow cytometry data
.
Cell Reports
.
2018
;
24
(
5
):
1377
-
1388
.
71.
Lacombe
F
,
Dupont
B
,
Lechevalier
N
, et al
.
New concepts of flow cytometry analysis in oncohematology: application to diagnosis and follow up (minimal residual disease) in AML, ALL, and MDS
.
Blood
.
2017
;
130
(
suppl 1
):
1421
.
72.
Marani
C
,
Clavio
M
,
Grasso
R
, et al
.
Integrating post induction WT1 quantification and flow-cytometry results improves minimal residual disease stratification in acute myeloid leukemia
.
Leuk Res
.
2013
;
37
(
12
):
1606
-
1611
.
73.
Getta
BM
,
Devlin
SM
,
Levine
RL
, et al
.
Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
7
):
1064
-
1071
.
74.
Hodes
A
,
Calvo
KR
,
Dulau
A
,
Maric
I
,
Sun
J
,
Braylan
R
.
The challenging task of enumerating blasts in the bone marrow
.
Semin Hematol
.
2019
;
56
(
1
):
58
-
64
.
75.
Freeman
SD
,
Hills
RK
,
Russell
NH
, et al
.
Induction response criteria in acute myeloid leukaemia: implications of a flow cytometric measurable residual disease negative test in refractory adults
.
Br J Haematol
.
2019
;
186
(
1
):
130
-
133
.
76.
Ouyang
J
,
Goswami
M
,
Tang
G
, et al
.
The clinical significance of negative flow cytometry immunophenotypic results in a morphologically scored positive bone marrow in patients following treatment for acute myeloid leukemia
.
Am J Hematol
.
2015
;
90
(
6
):
504
-
510
.
77.
Inaba
H
,
Coustan-Smith
E
,
Cao
X
, et al
.
Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia
.
J Clin Oncol
.
2012
;
30
(
29
):
3625
-
3632
.
78.
Loken
MR
,
Alonzo
TA
,
Pardo
L
, et al
.
Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group
.
Blood
.
2012
;
120
(
8
):
1581
-
1588
.
79.
Zhou
Y
,
Wood
BL
,
Walter
RB
, et al
.
Is there a need for morphologic exam to detect relapse in AML if multi-parameter flow cytometry is employed?
Leukemia
.
2017
;
31
(
11
):
2536
-
2537
.
80.
Hourigan
CS
,
Goswami
M
,
Battiwalla
M
, et al
.
When the minimal becomes measurable
.
J Clin Oncol
.
2016
;
34
(
21
):
2557
-
2558
.
81.
Versluis
J
,
Kalin
B
,
Zeijlemaker
W
, et al
.
Graft-versus-leukemia effect of allogeneic stem-cell transplantation and minimal residual disease in patients with acute myeloid leukemia in first complete remission
.
JCO Precision Oncology
.
2017
;
1
(
1
):
1
-
13
.
82.
Lambert
J
,
Lambert
J
,
Thomas
X
, et al
.
Early detection of WT1 minimal residual disease predicts outcome in acute myeloid leukemia and identify patients with high risk of relapse independently of allogeneic stem cell transplantation
.
Blood
.
2017
;
130
(
suppl 1
):
29
.
83.
Sierra
J
,
Garrido
A
,
Vives
S
, et al
.
Therapy for acute myeloid leukemia (AML) adjusted to genetic data and minimal residual disease: results of the AML12 Trial of the Spanish Cetlam Group in adults up to the age of 70 years
.
Blood
.
2017
;
130
(
suppl 1
):
567
.
84.
Venditti
A
,
Piciocchi
A
,
Candoni
A
, et al
. Risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia: results of the AML1310 trial of the GIMEMA group. Paper presented at the 22nd Congress of EHA, 23 June 2017, Madrid, Spain.
85.
Buckley
SA
,
Wood
BL
,
Othus
M
, et al
.
Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis
.
Haematologica
.
2017
;
102
(
5
):
865
-
873
.
86.
Hourigan
CS
,
Dillon
L
,
Logan
B
, et al
. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. Paper presented at the 24th Congress of EHA, 14 June 2019, Amsterdam, Netherlands.
87.
Wei
A
,
Strickland
SA
,
Hou
J-Z
, et al
.
Venetoclax with low-dose cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy
.
Blood
.
2018
;
132
:
284
.
88.
Boddu
P
,
Jorgensen
J
,
Kantarjian
H
, et al
.
Achievement of a negative minimal residual disease state after hypomethylating agent therapy in older patients with AML reduces the risk of relapse
.
Leukemia
.
2018
;
32
(
1
):
241
-
244
.
89.
Dillon
R
,
Hills
RK
,
Freeman
SD
, et al
.
Pre-transplant NPM1 mutant transcript level is highly predictive of outcome after allograft and thresholds are dependent on FLT3 ITD status
.
Blood
.
2018
;
132
:
2739
.
You do not currently have access to this content.