Abstract

Emerging methods to detect tumor-derived DNA in the blood plasma of patients with lymphomas—so-called “circulating tumor DNA” (ctDNA)—have the potential to change the way in which lymphoma is diagnosed and managed in the clinic. The possible applications for ctDNA are numerous, including mutation genotyping, response monitoring, and detection of minimal residual disease during a time of radiographic remission. This article discusses the methodology for detecting ctDNA in aggressive B-cell lymphomas, including digital polymerase chain reaction, targeted sequencing of immunoglobulin receptors, and targeted next-generation sequencing. The advantages of each of these methods are also compared, with a focus on promising clinical applications. These include identification of molecular subtypes (eg, cell-of-origin and double-hit lymphomas) from pretreatment plasma, molecular response prediction after an initial course of therapy, and early detection of relapsing disease prior to clinical relapse. Finally, this article discusses the challenges in implementing ctDNA assays in the clinic today, including possible solutions to these challenges.

References

References
1.
Abel
GA
,
Vanderplas
A
,
Rodriguez
MA
, et al
.
High rates of surveillance imaging for treated diffuse large B-cell lymphoma: findings from a large national database
.
Leuk Lymphoma
.
2012
;
53
(
6
):
1113
-
1116
.
2.
Scherer
F
,
Kurtz
DM
,
Diehn
M
,
Alizadeh
AA
.
High-throughput sequencing for noninvasive disease detection in hematologic malignancies
.
Blood
.
2017
;
130
(
4
):
440
-
452
.
3.
Kovacs
G
,
Robrecht
S
,
Fink
AM
, et al
.
Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III Studies of the German CLL Study Group
.
J Clin Oncol
.
2016
;
34
(
31
):
3758
-
3765
.
4.
Kwok
M
,
Rawstron
AC
,
Varghese
A
, et al
.
Minimal residual disease is an independent predictor for 10-year survival in CLL
.
Blood
.
2016
;
128
(
24
):
2770
-
2773
.
5.
Radich
JP
.
How I monitor residual disease in chronic myeloid leukemia
.
Blood
.
2009
;
114
(
16
):
3376
-
3381
.
6.
Newman
AM
,
Bratman
SV
,
To
J
, et al
.
An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage
.
Nat Med
.
2014
;
20
(
5
):
548
-
554
.
7.
Diehl
F
,
Schmidt
K
,
Choti
MA
, et al
.
Circulating mutant DNA to assess tumor dynamics
.
Nat Med
.
2008
;
14
(
9
):
985
-
990
.
8.
Demuth
C
,
Spindler
KG
,
Johansen
JS
, et al
.
Measuring KRAS mutations in circulating tumor DNA by droplet digital PCR and next-generation sequencing
.
Transl Oncol
.
2018
;
11
(
5
):
1220
-
1224
.
9.
Zhang
R
,
Chen
B
,
Tong
X
, et al
.
Diagnostic accuracy of droplet digital PCR for detection of EGFR T790M mutation in circulating tumor DNA
.
Cancer Manag Res
.
2018
;
10
:
1209
-
1218
.
10.
Drandi
D
,
Genuardi
E
,
Dogliotti
I
, et al
.
Highly sensitive MYD88L265P mutation detection by droplet digital polymerase chain reaction in Waldenström macroglobulinemia
.
Haematologica
.
2018
;
103
(
6
):
1029
-
1037
.
11.
Hattori
K
,
Sakata-Yanagimoto
M
,
Suehara
Y
, et al
.
Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma
.
Cancer Sci
.
2018
;
109
(
1
):
225
-
230
.
12.
Jardin
F
,
Pujals
A
,
Pelletier
L
, et al
.
Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma
.
Am J Hematol
.
2016
;
91
(
9
):
923
-
930
.
13.
Kurtz
DM
,
Green
MR
,
Bratman
SV
, et al
.
Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing
.
Blood
.
2015
;
125
(
24
):
3679
-
3687
.
14.
Roschewski
M
,
Dunleavy
K
,
Pittaluga
S
, et al
.
Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study
.
Lancet Oncol
.
2015
;
16
(
5
):
541
-
549
.
15.
Newman
AM
,
Lovejoy
AF
,
Klass
DM
, et al
.
Integrated digital error suppression for improved detection of circulating tumor DNA
.
Nat Biotechnol
.
2016
;
34
(
5
):
547
-
555
.
16.
Scherer
F
,
Kurtz
DM
,
Newman
AM
, et al
.
Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA
.
Sci Transl Med
.
2016
;
8
(
364
):
364ra155
.
17.
Rossi
D
,
Diop
F
,
Spaccarotella
E
, et al
.
Diffuse large B-cell lymphoma genotyping on the liquid biopsy
.
Blood
.
2017
;
129
(
14
):
1947
-
1957
.
18.
Kurtz
DM
,
Scherer
F
,
Jin
MC
, et al
.
Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2018
;
36
(
28
):
2845
-
2853
.
10.1200/JCO.2018.78.5246
19.
Bohers
E
,
Viailly
PJ
,
Becker
S
, et al
.
Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort
.
Blood Cancer J
.
2018
;
8
(
8
):
74
.
20.
Adalsteinsson
VA
,
Ha
G
,
Freeman
SS
, et al
.
Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors
.
Nat Commun
.
2017
;
8
(
1
):
1324
.
21.
Jin
MC
,
Kurtz
DM
,
Esfahani
MS
, et al
.
Noninvasive detection of clinically relevant copy number alterations in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2017
;
35
(
15 suppl
):
7507
.
22.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
.
2016
;
127
(
20
):
2375
-
2390
.
23.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published corrections appear in Nat Med. 2018;24(8):1290-1291 and Nat Med. 2018;24(8):1292]
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
24.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
;
171
(
2
):
481
-
494.e15
.
25.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
26.
Kurtz
DM
,
Scherer
F
,
Newman
AM
, et al
.
Noninvasive detection of BCL2, BCL6, and MYC translocations in diffuse large B-cell lymphoma
.
Blood
.
2016
;
128
(
22
):
2930
.
27.
Spina
V
,
Bruscaggin
A
,
Cuccaro
A
, et al
.
Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma
.
Blood
.
2018
;
131
(
22
):
2413
-
2425
.
28.
Sakata-Yanagimoto
M
,
Nakamoto-Matsubara
R
,
Komori
D
, et al
.
Detection of the circulating tumor DNAs in angioimmunoblastic T-cell lymphoma
.
Ann Hematol
.
2017
;
96
(
9
):
1471
-
1475
.
29.
Scherer
F
,
Kurtz
DM
,
Newman
AM
, et al
.
Development and validation of biopsy-free genotyping for molecular subtyping of diffuse large B-cell lymphoma
.
Blood
.
2016
;
128
(
22
):
1089
.
30.
Sasanelli
M
,
Meignan
M
,
Haioun
C
, et al
.
Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma
.
Eur J Nucl Med Mol Imaging
.
2014
;
41
(
11
):
2017
-
2022
.
31.
Lakhotia
R
,
Melani
C
,
Pittaluga
S
, et al
.
Circulating tumor DNA dynamics during therapy predict outcomes in mantle cell lymphoma
.
Blood
.
2018
;
132
(
suppl 1
):
147
.
32.
Thompson
CA
,
Ghesquieres
H
,
Maurer
MJ
, et al
.
Utility of routine post-therapy surveillance imaging in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2014
;
32
(
31
):
3506
-
3512
.
33.
Scherer
F
,
Kurtz
DM
,
Newman
AM
, et al
.
Noninvasive detection of ibrutinib resistance in non-Hodgkin lymphoma using cell-free DNA
.
Blood
.
2016
;
128
(
22
):
1752
.
34.
Agarwal
R
,
Chan
YC
,
Tam
CS
, et al
.
Dynamic molecular monitoring reveals that SWI-SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma
.
Nat Med
.
2019
;
25
(
1
):
119
-
129
.
35.
Roschewski
MJ
,
Melani
CJ
,
Pittaluga
S
, et al
.
Circulating tumor DNA to predict timing of relapse in mantle cell lymphoma
.
J Clin Oncol
.
2018
;
36
(
15 suppl
):
7576
.
36.
Melani
C
,
Pittaluga
S
,
Yee
L
, et al
.
Next-generation sequencing based monitoring of circulating-tumor DNA in untreated peripheral T-cell lymphoma
.
Blood
.
2017
;
130
(
suppl 1
):
2728
.
37.
Barrington
SF
,
Mikhaeel
NG
,
Kostakoglu
L
, et al
.
Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group
.
J Clin Oncol
.
2014
;
32
(
27
):
3048
-
3058
.
38.
Cheson
BD
,
Fisher
RI
,
Barrington
SF
, et al
;
Alliance, Australasian Leukaemia and Lymphoma Group
;
Eastern Cooperative Oncology Group
;
European Mantle Cell Lymphoma Consortium
;
Italian Lymphoma Foundation
;
European Organisation for Research
;
Treatment of Cancer/Dutch Hemato-Oncology Group
;
Grupo Español de Médula Ósea
;
German High-Grade Lymphoma Study Group
;
German Hodgkin’s Study Group
;
Japanese Lymphorra Study Group
;
Lymphoma Study Association
;
NCIC Clinical Trials Group
;
Nordic Lymphoma Study Group
;
Southwest Oncology Group
;
United Kingdom National Cancer Research Institute
.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification
.
J Clin Oncol
.
2014
;
32
(
27
):
3059
-
3068
.
39.
Chiappella
A
,
Martelli
M
,
Angelucci
E
, et al
.
Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04): final results of a multicentre, open-label, randomised, controlled, phase 3 study
.
Lancet Oncol
.
2017
;
18
(
8
):
1076
-
1088
.
40.
Dührsen
U
,
Müller
S
,
Hertenstein
B
, et al
;
PETAL Trial Investigators
.
Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A multicenter, randomized phase III trial
.
J Clin Oncol
.
2018
;
36
(
20
):
2024
-
2034
.
41.
Stiff
PJ
,
Unger
JM
,
Cook
JR
, et al
.
Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma
.
N Engl J Med
.
2013
;
369
(
18
):
1681
-
1690
.
42.
Johnson
P
,
Federico
M
,
Kirkwood
A
, et al
.
Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma
.
N Engl J Med
.
2016
;
374
(
25
):
2419
-
2429
.
You do not currently have access to this content.