Abstract

Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.

References

References
1.
Gruber
M
,
Bozic
I
,
Leshchiner
I
, et al
.
Growth dynamics in naturally progressing chronic lymphocytic leukaemia
.
Nature
.
2019
;
570
(
7762
):
474
-
479
.
2.
Landau
DA
,
Carter
SL
,
Stojanov
P
, et al
.
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
.
Cell
.
2013
;
152
(
4
):
714
-
726
.
3.
Ojha
J
,
Secreto
C
,
Rabe
K
, et al
.
Monoclonal B-cell lymphocytosis is characterized by mutations in CLL putative driver genes and clonal heterogeneity many years before disease progression
.
Leukemia
.
2014
;
28
(
12
):
2395
-
2398
.
4.
Landau
DA
,
Tausch
E
,
Taylor-Weiner
AN
, et al
.
Mutations driving CLL and their evolution in progression and relapse
.
Nature
.
2015
;
526
(
7574
):
525
-
530
.
5.
Puente
XS
,
Beà
S
,
Valdés-Mas
R
, et al
.
Non-coding recurrent mutations in chronic lymphocytic leukaemia
.
Nature
.
2015
;
526
(
7574
):
519
-
524
.
6.
Rodríguez-Vicente
AE
,
Bikos
V
,
Hernández-Sánchez
M
,
Malcikova
J
,
Hernández-Rivas
JM
,
Pospisilova
S
.
Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons
.
Oncotarget
.
2017
;
8
(
41
):
71234
-
71248
.
7.
Ahn
IE
,
Underbayev
C
,
Albitar
A
, et al
.
Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia
.
Blood
.
2017
;
129
(
11
):
1469
-
1479
.
8.
Herling
CD
,
Abedpour
N
,
Weiss
J
, et al
.
Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia
.
Nat Commun
.
2018
;
9
(
1
):
727
.
9.
Woyach
JA
,
Johnson
AJ
.
Targeted therapies in CLL: mechanisms of resistance and strategies for management
.
Blood
.
2015
;
126
(
4
):
471
-
477
.
10.
Braggio
E
,
Kay
NE
,
VanWier
S
, et al
.
Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse
.
Leukemia
.
2012
;
26
(
7
):
1698
-
1701
.
11.
Knight
SJ
,
Yau
C
,
Clifford
R
, et al
.
Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia
.
Leukemia
.
2012
;
26
(
7
):
1564
-
1575
.
12.
Ouillette
P
,
Collins
R
,
Shakhan
S
, et al
.
Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia
.
Blood
.
2011
;
118
(
11
):
3051
-
3061
.
13.
Schuh
A
,
Becq
J
,
Humphray
S
, et al
.
Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns
.
Blood
.
2012
;
120
(
20
):
4191
-
4196
.
14.
Brown
JR
,
Hanna
M
,
Tesar
B
, et al
.
Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia
.
Clin Cancer Res
.
2012
;
18
(
14
):
3791
-
3802
.
15.
Edelmann
J
,
Holzmann
K
,
Miller
F
, et al
.
High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations
.
Blood
.
2012
;
120
(
24
):
4783
-
4794
.
16.
Shanafelt
TD
,
Witzig
TE
,
Fink
SR
, et al
.
Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia
.
J Clin Oncol
.
2006
;
24
(
28
):
4634
-
4641
.
17.
Stilgenbauer
S
,
Sander
S
,
Bullinger
L
, et al
.
Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival
.
Haematologica
.
2007
;
92
(
9
):
1242
-
1245
.
18.
Kasar
S
,
Kim
J
,
Improgo
R
, et al
.
Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution
.
Nat Commun
.
2015
;
6
(
1
):
8866
.
19.
Wang
L
,
Lawrence
MS
,
Wan
Y
, et al
.
SF3B1 and other novel cancer genes in chronic lymphocytic leukemia
.
N Engl J Med
.
2011
;
365
(
26
):
2497
-
2506
.
20.
Lazarian
G
,
Guièze
R
,
Wu
CJ
.
Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia
.
J Clin Oncol
.
2017
;
35
(
9
):
984
-
993
.
21.
Arruga
F
,
Gizdic
B
,
Serra
S
, et al
.
Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia
.
Leukemia
.
2014
;
28
(
5
):
1060
-
1070
.
22.
Bretones
G
,
Álvarez
MG
,
Arango
JR
, et al
.
Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia
.
Blood
.
2018
;
132
(
22
):
2375
-
2388
.
23.
Guièze
R
,
Wu
CJ
.
Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia
.
Blood
.
2015
;
126
(
4
):
445
-
453
.
24.
te Raa
GD
,
Derks
IAM
,
Navrkalova
V
, et al
.
The impact of SF3B1 mutations in CLL on the DNA-damage response
.
Leukemia
.
2015
;
29
(
5
):
1133
-
1142
.
25.
Yin
S
,
Gambe
RG
,
Sun
J
, et al
.
A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and Atm deletion
.
Cancer Cell
.
2019
;
35
(
2
):
283
-
296.e5
.
26.
Nadeu
F
,
Clot
G
,
Delgado
J
, et al
.
Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia
.
Leukemia
.
2018
;
32
(
3
):
645
-
653
.
27.
Leshchiner
I
,
Livitz
D
,
Gainor
JF
, et al
.
Comprehensive analysis of tumour intiation, spatial and temporal progression under multiple lines of treatment [published online ahead of print]
.
bioRxiv
.
508127. 16 February 2019. doi:10.1101/508127
.
28.
Mansouri
L
,
Wierzbinska
JA
,
Plass
C
,
Rosenquist
R
.
Epigenetic deregulation in chronic lymphocytic leukemia: clinical and biological impact
.
Semin Cancer Biol
.
2018
;
51
:
1
-
11
.
29.
Cahill
N
,
Bergh
AC
,
Kanduri
M
, et al
.
450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments
.
Leukemia
.
2013
;
27
(
1
):
150
-
158
.
30.
Kulis
M
,
Heath
S
,
Bibikova
M
, et al
.
Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia
.
Nat Genet
.
2012
;
44
(
11
):
1236
-
1242
.
31.
Kulis
M
,
Merkel
A
,
Heath
S
, et al
.
Whole-genome fingerprint of the DNA methylome during human B cell differentiation
.
Nat Genet
.
2015
;
47
(
7
):
746
-
756
.
32.
Beekman
R
,
Chapaprieta
V
,
Russiñol
N
, et al
.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
6
):
868
-
880
.
33.
Landau
DA
,
Clement
K
,
Ziller
MJ
, et al
.
Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia
.
Cancer Cell
.
2014
;
26
(
6
):
813
-
825
.
34.
Oakes
CC
,
Claus
R
,
Gu
L
, et al
.
Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia
.
Cancer Discov
.
2014
;
4
(
3
):
348
-
361
.
35.
Oakes
CC
,
Seifert
M
,
Assenov
Y
, et al
.
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia
.
Nat Genet
.
2016
;
48
(
3
):
253
-
264
.
36.
Gaiti
F
,
Chaligne
R
,
Gu
H
, et al
.
Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia
.
Nature
.
2019
;
569
(
7757
):
576
-
580
.
37.
Rodríguez
D
,
Bretones
G
,
Arango
JR
, et al
.
Molecular pathogenesis of CLL and its evolution
.
Int J Hematol
.
2015
;
101
(
3
):
219
-
228
.
38.
Pastore
A
,
Gaiti
F
,
Lu
SX
, et al
.
Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL
.
Nat Commun
.
2019
;
10
(
1
):
1874
.
39.
Wang
J
,
Khiabanian
H
,
Rossi
D
, et al
.
Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia
.
Elife
.
2014
;
3
:
e02869
.
40.
Komarova
NL
,
Burger
JA
,
Wodarz
D
.
Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL)
.
Proc Natl Acad Sci USA
.
2014
;
111
(
38
):
13906
-
13911
.
41.
Burger
JA
,
Li
KW
,
Keating
MJ
, et al
.
Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib
.
JCI Insight
.
2017
;
2
(
2
):
e89904
.
42.
Guo
H
,
Zhu
P
,
Guo
F
, et al
.
Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing
.
Nat Protoc
.
2015
;
10
(
5
):
645
-
659
.
43.
Zhao
Z
,
Goldin
L
,
Liu
S
, et al
.
Evolution of multiple cell clones over a 29-year period of a CLL patient
.
Nat Commun
.
2016
;
7
(
1
):
13765
.
44.
Trapnell
C
,
Cacchiarelli
D
,
Grimsby
J
, et al
.
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
.
Nat Biotechnol
.
2014
;
32
(
4
):
381
-
386
.
45.
La Manno
G
,
Soldatov
R
,
Zeisel
A
, et al
.
RNA velocity of single cells
.
Nature
.
2018
;
560
(
7719
):
494
-
498
.
46.
Al’Khafaji
AM
,
Deatherage
D
,
Brock
A
.
Control of lineage-specific gene expression by functionalized gRNA barcodes
.
ACS Synth Biol
.
2018
;
7
(
10
):
2468
-
2474
.
47.
Bhang
HE
,
Ruddy
DA
,
Krishnamurthy Radhakrishna
V
, et al
.
Studying clonal dynamics in response to cancer therapy using high-complexity barcoding
.
Nat Med
.
2015
;
21
(
5
):
440
-
448
.
48.
Hata
AN
,
Niederst
MJ
,
Archibald
HL
, et al
.
Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition
.
Nat Med
.
2016
;
22
(
3
):
262
-
269
.
49.
McKenna
A
,
Findlay
GM
,
Gagnon
JA
,
Horwitz
MS
,
Schier
AF
,
Shendure
J
.
Whole-organism lineage tracing by combinatorial and cumulative genome editing
.
Science
.
2016
;
353
(
6298
):
aaf7907
.
50.
Bell
R
.
Developing a clinical program based on the needs of patients with chronic lymphocytic leukemia: preparing for illness episodes
.
J Adv Pract Oncol
.
2017
;
8
(
5
):
462
-
473
.
51.
Smith
EN
,
Ghia
EM
,
DeBoever
CM
, et al
.
Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development
.
Blood Cancer J
.
2015
;
5
(
4
):
e303
.
52.
Byrd
JC
,
Furman
RR
,
Coutre
SE
, et al
.
Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2013
;
369
(
1
):
32
-
42
.
53.
Jain
P
,
Keating
M
,
Wierda
W
, et al
.
Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib
.
Blood
.
2015
;
125
(
13
):
2062
-
2067
.
54.
Ouillette
P
,
Saiya-Cork
K
,
Seymour
E
,
Li
C
,
Shedden
K
,
Malek
SN
.
Clonal evolution, genomic drivers, and effects of therapy in chronic lymphocytic leukemia
.
Clin Cancer Res
.
2013
;
19
(
11
):
2893
-
2904
.
55.
Zenz
T
,
Eichhorst
B
,
Busch
R
, et al
.
TP53 mutation and survival in chronic lymphocytic leukemia
.
J Clin Oncol
.
2010
;
28
(
29
):
4473
-
4479
.
56.
Ljungström
V
,
Cortese
D
,
Young
E
, et al
.
Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations
.
Blood
.
2016
;
127
(
8
):
1007
-
1016
.
57.
Hernández-Sánchez
M
,
Kotaskova
J
,
Rodríguez
AE
, et al
.
CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase
.
Leukemia
.
2019
;
33
(
2
):
518
-
558
.
58.
Yu
L
,
Kim
HT
,
Kasar
S
, et al
.
Survival of del17p CLL depends on genomic complexity and somatic mutation
.
Clin Cancer Res
.
2017
;
23
(
3
):
735
-
745
.
59.
Neel
DS
,
Bivona
TG
.
Resistance is futile: overcoming resistance to targeted therapies in lung adenocarcinoma
.
NPJ Precis Oncol
.
2017
;
1
:
3
.
60.
Furman
RR
,
Cheng
S
,
Lu
P
, et al
.
Ibrutinib resistance in chronic lymphocytic leukemia
.
N Engl J Med
.
2014
;
370
(
24
):
2352
-
2354
.
61.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib
.
N Engl J Med
.
2014
;
370
(
24
):
2286
-
2294
.
62.
Burger
JA
,
Tedeschi
A
,
Barr
PM
, et al
;
RESONATE-2 Investigators
.
Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia
.
N Engl J Med
.
2015
;
373
(
25
):
2425
-
2437
.
63.
Kadri
S
,
Lee
J
,
Fitzpatrick
C
, et al
.
Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL
.
Blood Adv
.
2017
;
1
(
12
):
715
-
727
.
64.
Burger
JA
,
Landau
DA
,
Taylor-Weiner
A
, et al
.
Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition
.
Nat Commun
.
2016
;
7
(
1
):
11589
.
65.
Landau
DA
,
Sun
C
,
Rosebrock
D
, et al
.
The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib-targeted therapy
.
Nat Commun.
2017
;
8
(
1
):
2185
.
66.
Blombery
P
,
Anderson
MA
,
Gong
JN
, et al
.
Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia
.
Cancer Discov
.
2019
;
9
(
3
):
342
-
353
.
67.
Guieze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies [published online 4 September 2019]
.
Cancer Cell
.
doi:10.1016/j.ccell.2019.08.005
.
68.
Rossi
D
,
Rasi
S
,
Spina
V
, et al
.
Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia
.
Blood
.
2013
;
121
(
8
):
1403
-
1412
.
69.
Acar
A
,
Nichol
D
,
Fernandez-Mateos
J
, et al
.
Exploiting evolutionary herding to control drug resistance in cancer
.
bioRxiv
.
566950. 4 March 2019. doi:10.1101/566950
.
70.
Forconi
F
,
Moss
P
.
Perturbation of the normal immune system in patients with CLL
.
Blood
.
2015
;
126
(
5
):
573
-
581
.
You do not currently have access to this content.