Abstract

The treatment of primary immunodeficiency disorders with allogeneic hematopoietic cell transplantation (HCT) has a history dating back to 1968 with the first successful transplant for a patient with severe combined immunodeficiency (SCID). The omission of conditioning for patients with SCID owing to their inability to reject allogeneic grafts and the increasing use of reduced intensity conditioning regimens often result in a state of mixed or split donor-recipient chimerism. The use of gene therapy (GT) via retroviral or lentiviral transduction of autologous CD34+ hematopoietic stem and progenitor cells is expected to correct only a portion of the hematopoietic stem cell compartment. The consequences of partial correction after either form of cellular therapy differ according to how the genetic deficiency affects immune cell development and function. Moreover, the conditioning regimen or lack thereof impacts the cell lineages at risk of partial correction. Advances in our understanding of immune reconstitution after HCT and GT for SCID, Wiskott–Aldrich syndrome, and chronic granulomatous disease are discussed.

References

References
1.
Picard
C
,
Gaspar
HB
,
Al-Herz
W
, et al
.
International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity
.
J Clin Immunol
.
2018
;
38
(
1
):
96
-
128
.
2.
Kapoor
N
,
Kirkpatrick
D
,
Blaese
RM
, et al
.
Reconstitution of normal megakaryocytopoiesis and immunologic functions in Wiskott-Aldrich syndrome by marrow transplantation following myeloablation and immunosuppression with busulfan and cyclophosphamide
.
Blood
.
1981
;
57
(
4
):
692
-
696
.
3.
Gatti
RA
,
Meuwissen
HJ
,
Allen
HD
,
Hong
R
,
Good
RA
.
Immunological reconstitution of sex-linked lymphopenic immunological deficiency
.
Lancet
.
1968
;
2
(
7583
):
1366
-
1369
.
4.
Reisner
Y
,
Kapoor
N
,
Kirkpatrick
D
, et al
.
Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells
.
Blood
.
1983
;
61
(
2
):
341
-
348
.
5.
Buckley
RH
,
Schiff
SE
,
Schiff
RI
, et al
.
Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency
.
N Engl J Med
.
1999
;
340
(
7
):
508
-
516
.
6.
Small
TN
,
Avigan
D
,
Dupont
B
, et al
.
Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis
.
Biol Blood Marrow Transplant
.
1997
;
3
(
2
):
65
-
75
.
7.
Admiraal
R
,
Boelens
JJ
.
Antithymocyte globulin: steps toward individualized dosing
.
Biol Blood Marrow Transplant
.
2018
;
24
(
3
):
633
-
634
.
8.
Admiraal
R
,
Jol-van der Zijde
CM
,
Furtado Silva
JM
, et al
.
Population pharmacokinetics of alemtuzumab (campath) in pediatric hematopoietic cell transplantation: towards individualized dosing to improve outcome [published online ahead of print 27 May 2019]
.
Clin Pharmacokinet
.
doi:10.1007/s40262-019-00782-0
.
9.
Langenhorst
JB
,
Dorlo
TPC
,
van Maarseveen
EM
, et al
.
Population pharmacokinetics of fludarabine in children and adults during conditioning prior to allogeneic hematopoietic cell transplantation
.
Clin Pharmacokinet
.
2019
;
58
(
5
):
627
-
637
.
10.
Ivaturi
V
,
Dvorak
CC
,
Chan
D
, et al
.
Pharmacokinetics and model-based dosing to optimize fludarabine therapy in pediatric hematopoietic cell transplant recipients
.
Biol Blood Marrow Transplant
.
2017
;
23
(
10
):
1701
-
1713
.
11.
de Koning
C
,
Langenhorst
J
,
van Kesteren
C
, et al
.
Innate immune recovery predicts CD4+ T cell reconstitution after hematopoietic cell transplantation
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
819
-
826
.
12.
Hacein-Bey-Abina
S
,
Von Kalle
C
,
Schmidt
M
, et al
.
LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1
.
Science
.
2003
;
302
(
5644
):
415
-
419
.
13.
Howe
SJ
,
Mansour
MR
,
Schwarzwaelder
K
, et al
.
Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients
.
J Clin Invest
.
2008
;
118
(
9
):
3143
-
3150
.
14.
Hacein-Bey-Abina
S
,
Pai
S-Y
,
Gaspar
HB
, et al
.
A modified γ-retrovirus vector for X-linked severe combined immunodeficiency
.
N Engl J Med
.
2014
;
371
(
15
):
1407
-
1417
.
15.
Aiuti
A
,
Cattaneo
F
,
Galimberti
S
, et al
.
Gene therapy for immunodeficiency due to adenosine deaminase deficiency
.
N Engl J Med
.
2009
;
360
(
5
):
447
-
458
.
16.
Aiuti
A
,
Slavin
S
,
Aker
M
, et al
.
Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning
.
Science
.
2002
;
296
(
5577
):
2410
-
2413
.
17.
Gaspar
HB
,
Cooray
S
,
Gilmour
KC
, et al
.
Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction [published correction appears in Sci Transl Med. 2013 5(168):168er1]
.
Sci Transl Med
.
2011
;
3
(
97
):
97ra80
.
18.
Candotti
F
,
Shaw
KL
,
Muul
L
, et al
.
Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans
.
Blood
.
2012
;
120
:
3635
-
3646
.
19.
Shaw
KL
,
Garabedian
E
,
Mishra
S
, et al
.
Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency
.
J Clin Invest
.
2017
;
127
(
5
):
1689
-
1699
.
20.
Cooper
AR
,
Lill
GR
,
Shaw
K
, et al
.
Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients
.
Blood
.
2017
;
129
(
19
):
2624
-
2635
.
21.
Gennery
AR
,
Slatter
MA
,
Grandin
L
, et al;
European Society for Immunodeficiency
.
Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better?
J Allergy Clin Immunol
.
2010
;
126
(
3
):
602
-
10.e1
.
22.
Haddad
E
,
Logan
BR
,
Griffith
LM
, et al
.
SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery
.
Blood
.
2018
;
132
(
17
):
1737
-
1749
.
23.
Heimall
J
,
Logan
BR
,
Cowan
MJ
, et al
.
Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study
.
Blood
.
2017
;
130
(
25
):
2718
-
2727
.
24.
Pai
S-Y
,
Logan
BR
,
Griffith
LM
, et al
.
Transplantation outcomes for severe combined immunodeficiency, 2000-2009
.
N Engl J Med
.
2014
;
371
(
5
):
434
-
446
.
25.
Railey
MD
,
Lokhnygina
Y
,
Buckley
RH
.
Long-term clinical outcome of patients with severe combined immunodeficiency who received related donor bone marrow transplants without pretransplant chemotherapy or post-transplant GVHD prophylaxis
.
J Pediatr
.
2009
;
155
(
6
):
834
-
840.e1
.
26.
Dvorak
CC
,
Haddad
E
,
Buckley
RH
, et al
.
The genetic landscape of severe combined immunodeficiency in the United States and Canada in the current era (2010-2018)
.
J Allergy Clin Immunol
.
2019
;
143
(
1
):
405
-
407
.
27.
Wiekmeijer
A-S
,
Pike-Overzet
K
,
IJspeert
H
, et al
.
Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells
.
J Allergy Clin Immunol
.
2016
;
137
(
2
):
517
-
526.e3
.
28.
Dobbs
K
,
Tabellini
G
,
Calzoni
E
, et al
.
Natural killer cells from patients with recombinase-activating gene and non-homologous end joining gene defects comprise a higher frequency of CD56bright NKG2A+++ cells, and yet display increased degranulation and higher perforin content
.
Front Immunol
.
2017
;
8
:
798
.
29.
Schuetz
C
,
Neven
B
,
Dvorak
CC
, et al
.
SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID
.
Blood
.
2014
;
123
(
2
):
281
-
289
.
30.
Cowan
MJ
,
Gennery
AR
.
Radiation-sensitive severe combined immunodeficiency: the arguments for and against conditioning before hematopoietic cell transplantation--what to do?
J Allergy Clin Immunol
.
2015
;
136
(
5
):
1178
-
1185
.
31.
Kohn
DB
,
Shaw
KL
,
Garabedian
EK
, et al
.
Autologous ex vivo lentiviral gene therapy for the treatment of severe combined immune deficiency due to adenosine deaminase deficiency
.
J Clin Immunol
.
2019
;
39
(
suppl 1
):
S42
.
32.
Miggelbrink
AM
,
Logan
BR
,
Buckley
RH
, et al
.
B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation
.
Blood
.
2018
;
131
(
26
):
2967
-
2977
.
33.
Hacein-Bey-Abina
S
,
Hauer
J
,
Lim
A
, et al
.
Efficacy of gene therapy for X-linked severe combined immunodeficiency
.
N Engl J Med
.
2010
;
363
(
4
):
355
-
364
.
34.
Gaspar
HB
,
Cooray
S
,
Gilmour
KC
, et al
.
Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency
.
Sci Transl Med
.
2011
;
3
(
97
):
97ra79
.
35.
De Ravin
SS
,
Wu
X
,
Moir
S
, et al
.
Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency
.
Sci Transl Med
.
2016
;
8
(
335
):
335ra57
.
36.
Mamcarz
E
,
Zhou
S
,
Lockey
T
, et al
.
Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1
.
N Engl J Med
.
2019
;
380
(
16
):
1525
-
1534
.
37.
Pai
S-Y
,
Notarangelo
LD
.
Hematopoietic cell transplantation for Wiskott-Aldrich syndrome: advances in biology and future directions for treatment
.
Immunol Allergy Clin North Am
.
2010
;
30
(
2
):
179
-
194
.
38.
Moratto
D
,
Giliani
S
,
Bonfim
C
, et al
.
Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study
.
Blood
.
2011
;
118
(
6
):
1675
-
1684
.
39.
Aiuti
A
,
Biasco
L
,
Scaramuzza
S
, et al
.
Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome
.
Science
.
2013
;
341
(
6148
):
1233151
.
40.
Hacein-Bey Abina
S
,
Gaspar
HB
,
Blondeau
J
, et al
.
Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome
.
JAMA
.
2015
;
313
(
15
):
1550
-
1563
.
41.
Becker-Herman
S
,
Meyer-Bahlburg
A
,
Schwartz
MA
, et al
.
WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity
.
J Exp Med
.
2011
;
208
(
10
):
2033
-
2042
.
42.
Crestani
E
,
Volpi
S
,
Candotti
F
, et al
.
Broad spectrum of autoantibodies in patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia
.
J Allergy Clin. Immunol.
2015
;
136
:
1401
-
1404.e1
.
43.
Recher
M
,
Burns
SO
,
de la Fuente
MA
, et al
.
B cell-intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice
.
Blood
.
2012
;
119
(
12
):
2819
-
2828
.
44.
Bouma
G
,
Carter
NA
,
Recher
M
, et al
.
Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells
.
Eur J Immunol
.
2014
;
44
(
9
):
2692
-
2702
.
45.
Du
H-Q
,
Zhang
X
,
An
Y-F
,
Ding
Y
,
Zhao
X-D
.
Effects of Wiskott-Aldrich syndrome protein deficiency on IL-10-producing regulatory B cells in humans and mice
.
Scand J Immunol
.
2015
;
81
(
6
):
483
-
493
.
46.
Biswas
A
,
Shouval
DS
,
Griffith
A
, et al
.
WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis
.
Nat Commun
.
2018
;
9
(
1
):
1779
.
47.
Lee
PP
,
Lobato-Márquez
D
,
Pramanik
N
, et al
.
Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells
.
Nat Commun
.
2017
;
8
(
1
):
1576
.
48.
Sereni
L
,
Castiello
MC
,
Marangoni
F
, et al
.
Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation
.
J Allergy Clin Immunol
.
2018
;
142
(
4
):
1272
-
1284
.
49.
Ozsahin
H
,
Cavazzana-Calvo
M
,
Notarangelo
LD
, et al
.
Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation
.
Blood
.
2008
;
111
(
1
):
439
-
445
.
50.
Ferrua
F
,
Cicalese
MP
,
Galimberti
S
, et al
.
Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study
.
Lancet Haematol
.
2019
;
6
(
5
):
e239
-
e253
.
51.
Güngör
T
,
Teira
P
,
Slatter
M
, et al;
Inborn Errors Working Party of the European Society for Blood and Marrow Transplantation
.
Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study
.
Lancet
.
2014
;
383
(
9915
):
436
-
448
.
52.
Marsh
RA
,
Leiding
JW
,
Logan
BR
, et al
.
Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT [published online ahead of print 2 August 2019]
.
J Clin Immunol
. doi:10.1007/s10875-019-00659-8.
53.
Marciano
BE
,
Zerbe
CS
,
Falcone
EL
, et al
.
X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability
.
J Allergy Clin Immunol
.
2018
;
141
(
1
):
365
-
371
.
54.
Ott
MG
,
Schmidt
M
,
Schwarzwaelder
K
, et al
.
Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1
.
Nat Med
.
2006
;
12
(
4
):
401
-
409
.
55.
Siler
U
,
Paruzynski
A
,
Holtgreve-Grez
H
, et al
.
Successful combination of sequential gene therapy and rescue allo-HSCT in two children with X-CGD—importance of timing
.
Curr Gene Ther
.
2015
;
15
(
4
):
416
-
427
.
56.
Santilli
G
,
Almarza
E
,
Brendel
C
, et al
.
Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells
.
Mol Ther
.
2011
;
19
(
1
):
122
-
132
.
57.
Malech
H
,
Booth
C
,
Kang
E
, et al
.
Lentiviral vector gene therapy for X-linked chronic granulomatous disease corrects neutrophil function
.
J Clin Immunol
.
2019
;
39
(
suppl 1
):
S45
.
You do not currently have access to this content.