Abstract

The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) share a common pathobiology of constitutive activation of the JAK and STAT pathway, despite having the 3 distinct phenotypes of essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Targeting the JAK-STAT pathway has led to remarkable clinical benefit, including reduction in splenomegaly, amelioration of cytokine-driven symptoms, improvement in quality of life, and even some improvement in survival. However, targeting this pathway has not resulted in consistent disease modification by current metrics, including a reduction in mutant allele burden or reversal of fibrosis. Moreover, targeting JAK-STAT can lead to limiting treatment-emergent side effects, such as anemia and thrombocytopenia. Continued discovery points to a complex system of pathogenesis beyond JAK-STAT driving the formation and evolution of MPNs. This article reviews the successes and limitations of JAK-STAT inhibition, surveys the strategies behind emerging therapies, and discusses the challenges that are present in moving beyond JAK-STAT.

References

References
1.
Springsteen
B
.
Dancing in the dark. Born in the USA
.
New York, NY
:
Columbia Records
;
1984
.
2.
Dameshek
W
.
Some speculations on the myeloproliferative syndromes
.
Blood
.
1951
;
6
(
4
):
372
-
375
.
3.
Shammo
JM
,
Stein
BL
.
Mutations in MPNs: prognostic implications, window to biology, and impact on treatment decisions
.
Hematology (Am Soc Hematol Educ Program)
.
2016
;
2016
(
1
):
552
-
560
.
4.
Vainchenker
W
,
Kralovics
R
.
Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms
.
Blood
.
2017
;
129
(
6
):
667
-
679
.
5.
Leroy
E
,
Constantinescu
SN
.
Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile Janus kinase inhibition [published correction appears in Leukemia. 2017;31(12):2853]
.
Leukemia
.
2017
;
31
(
5
):
1023
-
1038
.
6.
Zhou
T
,
Georgeon
S
,
Moser
R
,
Moore
DJ
,
Caflisch
A
,
Hantschel
O
.
Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348) [published correction appears in Leukemia. 2014;28(2):471-472]
.
Leukemia
.
2014
;
28
(
2
):
404
-
407
.
7.
Mascarenhas
JO
,
Talpaz
M
,
Gupta
V
, et al
.
Primary analysis of a phase II open-label trial of INCB039110, a selective JAK1 inhibitor, in patients with myelofibrosis
.
Haematologica
.
2017
;
102
(
2
):
327
-
335
.
8.
Mascarenhas
J
,
Hoffman
R
,
Talpaz
M
, et al
.
Results of the Persist-2 phase 3 study of pacritinib (PAC) versus best available therapy (BAT), including ruxolitinib (RUX), in patients (pts) with myelofibrosis (MF) and platelet counts <100,000/µl
.
Blood
.
2016
;
128
(
22
):
LBA-5
.
9.
Oh
ST
,
Talpaz
M
,
Gerds
AT
, et al
.
Hepcidin suppression by momelotinib is associated with increased iron availability and erythropoiesis in transfusion-dependent myelofibrosis patients
.
Blood
.
2018
;
132
(
suppl 1
):
4282
.
10.
Verstovsek
S
,
Mesa
RA
,
Gotlib
J
, et al
.
A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis
.
N Engl J Med
.
2012
;
366
(
9
):
799
-
807
.
11.
Harrison
C
,
Kiladjian
JJ
,
Al-Ali
HK
, et al
.
JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis
.
N Engl J Med
.
2012
;
366
(
9
):
787
-
798
.
12.
Verstovsek
S
,
Gotlib
J
,
Mesa
RA
, et al
.
Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses
.
J Hematol Oncol
.
2017
;
10
(
1
):
156
.
13.
Vannucchi
AM
,
Kiladjian
JJ
,
Griesshammer
M
, et al
.
Ruxolitinib versus standard therapy for the treatment of polycythemia vera
.
N Engl J Med
.
2015
;
372
(
5
):
426
-
435
.
14.
Harrison
CN
,
Schaap
N
,
Vannucchi
AM
, et al
.
Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study
.
Lancet Haematol
.
2017
;
4
(
7
):
e317
-
e324
.
15.
Harrison
CN
,
Schaap
N
,
Vannucchi
AM
, et al
.
Fedratinib (FEDR) in myelofibrosis (MF) patients previously treated with ruxolitinib (RUX): a reanalysis of the JAKARTA-2 study
.
J Clin Oncol
.
2019
;
37
(
15 suppl
):
7057
.
16.
Berdeja
J
,
Palandri
F
,
Baer
MR
, et al
.
Phase 2 study of gandotinib (LY2784544) in patients with myeloproliferative neoplasms
.
Leuk Res
.
2018
;
71
:
82
-
88
.
17.
Deininger
M
,
Radich
J
,
Burn
TC
,
Huber
R
,
Paranagama
D
,
Verstovsek
S
.
The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis
.
Blood
.
2015
;
126
(
13
):
1551
-
1554
.
18.
Harrison
CN
,
Vannucchi
AM
,
Kiladjian
JJ
, et al
.
Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis [published correction appear in Leukemia. 2017;31(3):775]
.
Leukemia
.
2016
;
30
(
8
):
1701
-
1707
.
19.
Verstovsek
S
,
Vannucchi
AM
,
Griesshammer
M
, et al
.
Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial
.
Haematologica
.
2016
;
101
(
7
):
821
-
829
.
20.
Meyer
SC
,
Levine
RL
.
Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors
.
Clin Cancer Res
.
2014
;
20
(
8
):
2051
-
2059
.
21.
Newberry
KJ
,
Patel
K
,
Masarova
L
, et al
.
Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation
.
Blood
.
2017
;
130
(
9
):
1125
-
1131
.
22.
Patel
KP
,
Newberry
KJ
,
Luthra
R
, et al
.
Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib
.
Blood
.
2015
;
126
(
6
):
790
-
797
.
23.
Pardanani
A
,
Abdelrahman
RA
,
Finke
C
, et al
.
Genetic determinants of response and survival in momelotinib-treated patients with myelofibrosis
.
Leukemia
.
2015
;
29
(
3
):
741
-
744
.
24.
Barbui
T
,
Tefferi
A
,
Vannucchi
AM
, et al
.
Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet
.
Leukemia
.
2018
;
32
(
5
):
1057
-
1069
.
25.
Bose
P
,
Daver
N
,
Pemmaraju
N
, et al
.
Sotatercept (ACE-011) alone and in combination with ruxolitinib in patients (pts) with myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) and anemia
.
Blood
.
2017
;
130
(
suppl 1
):
255
.
26.
Rossi
C
,
Zini
R
,
Rontauroli
S
, et al
;
AGIMM (AIRC-Gruppo Italiano Malattie Mieloproliferative) investigators
.
Role of TGF-β1/miR-382-5p/SOD2 axis in the induction of oxidative stress in CD34+ cells from primary myelofibrosis
.
Mol Oncol
.
2018
;
12
(
12
):
2102
-
2123
.
27.
Verstovsek
S
,
Mesa
RA
,
Foltz
LM
, et al
.
Phase 2 trial of PRM-151, an anti-fibrotic agent, in patients with myelofibrosis: stage 1 results
.
Blood
.
2014
;
124
(
21
):
713
.
28.
Gerds
AT
,
Tauchi
T
,
Ritchie
E
, et al
.
Phase 1/2 trial of glasdegib in patients with primary or secondary myelofibrosis previously treated with ruxolitinib [published correction appears in Leuk Res. 2019;81:105]
.
Leuk Res
.
2019
;
79
:
38
-
44
.
29.
Gupta
V
,
Harrison
CN
,
Hasselbalch
H
, et al
.
Phase 1b/2 study of the efficacy and safety of sonidegib (LDE225) in combination with ruxolitinib (INC424) in patients with myelofibrosis
.
Blood
.
2015
;
126
(
23
):
825
.
30.
Durrant
ST
,
Nagler
A
,
Guglielmelli
P
, et al
.
Results from HARMONY: an open-label, multicentre, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis [published online ahead of print 9 May 2019]
.
Haematologica
. doi:10.3324/haematol.2018.209965.haematol.2018.209965.
31.
Daver
NG
,
Kremyanskaya
M
,
O’Connell
C
, et al
.
A phase 2 study of the safety and efficacy of INCB050465, a selective PI3Kδ inhibitor, in combination with ruxolitinib in patients with myelofibrosis
.
Blood
.
2018
;
132
(
suppl 1
):
353
.
32.
Pemmaraju
N
,
Carter
BZ
,
Kantarjian
HM
, et al
.
LCL161, an oral Smac mimetic/IAP antagonist for patients with myelofibrosis (MF): novel translational findings among long-term responders in a phase 2 clinical trial
.
Blood
.
2018
;
132
(
suppl 1
):
687
-
687
.
33.
Lu
M
,
Xia
L
,
Li
Y
,
Wang
X
,
Hoffman
R
.
The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon α 2a target JAK2V617F-positive progenitor and stem cells
.
Blood
.
2014
;
124
(
5
):
771
-
779
.
34.
Mascarenhas
J
,
Lu
M
,
Kosiorek
H
, et al
.
Oral idasanutlin in patients with polycythemia vera [published online ahead of print 5 June 2019]
.
Blood
. doi:10.1182/blood.2018893545.blood.2018893545.
35.
Mascarenhas
J
,
Lu
M
,
Virtgaym
E
, et al
.
Open label phase I study of single agent oral RG7388 (idasanutlin) in patients with polycythemia vera and essential thrombocythemia
.
Blood
.
2017
;
130
(
suppl 1
):
254
.
36.
Gangat
N
,
Stein
BL
,
Marinaccio
C
, et al
.
Alisertib (MLN8237), an oral selective inhibitor of aurora kinase A, has clinical activity and restores GATA1 expression in patients with myelofibrosis
.
Blood
.
2018
;
132
(
suppl 1
):
688
.
37.
Mascarenhas
J
,
Komrokji
RS
,
Cavo
M
, et al
.
Imetelstat is effective treatment for patients with intermediate-2 or high-risk myelofibrosis who have relapsed on or are refractory to janus kinase inhibitor therapy: results of a phase 2 randomized study of two dose levels
.
Blood
.
2018
;
132
(
suppl 1
):
685
.
38.
Kremyanskaya
M
,
Hoffman
R
,
Mascarenhas
J
, et al
.
A phase 2 study of Cpi-0610, a bromodomain and extraterminal (BET) inhibitor, in patients with myelofibrosis (MF)
.
Blood
.
2018
;
132
(
suppl 1
):
5481
.
39.
Kleppe
M
,
Koche
R
,
Zou
L
, et al
.
Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms
.
Cancer Cell
.
2018
;
33
(
1
):
29
-
43.e27
.
40.
Brown
JD
,
Lin
CY
,
Duan
Q
, et al
.
NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis
.
Mol Cell
.
2014
;
56
(
2
):
219
-
231
.
41.
Sashida
G
,
Wang
C
,
Tomioka
T
, et al
.
The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition
.
J Exp Med
.
2016
;
213
(
8
):
1459
-
1477
.
42.
Vannucchi
AM
,
Harrison
CN
.
Emerging treatments for classical myeloproliferative neoplasms
.
Blood
.
2017
;
129
(
6
):
693
-
703
.
43.
Harrison
CN
,
McLornan
DP
.
Current treatment algorithm for the management of patients with myelofibrosis, JAK inhibitors, and beyond
.
Hematology (Am Soc Hematol Educ Program)
.
2017
;
2017
(
1
):
489
-
497
.
44.
Scherber
RM
,
Mesa
RA
.
Managing myelofibrosis (MF) that “blasts” through: advancements in the treatment of relapsed/refractory and blast-phase MF
.
Hematology (Am Soc Hematol Educ Program)
.
2018
;
2018
(
1
):
118
-
126
.
45.
Pardanani
A
,
Tefferi
A
.
How I treat myelofibrosis after failure of JAK inhibitors
.
Blood
.
2018
;
132
(
5
):
492
-
500
.
46.
Pecquet
C
,
Balligand
T
,
Chachoua
I
, et al
.
Secreted mutant calreticulins as rogue cytokines trigger thrombopoietin receptor activation specifically in CALR mutated cells: perspectives for MPN therapy
.
Blood
.
2018
;
132
(
suppl 1
):
4
.
47.
Pecquet
C
,
Chachoua
I
,
Roy
A
, et al
.
Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants
.
Blood
.
2019
;
133
(
25
):
2669
-
2681
.
48.
Meyer
SC
,
Keller
MD
,
Chiu
S
, et al
.
CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms
.
Cancer Cell
.
2015
;
28
(
1
):
15
-
28
.
49.
Kiladjian
J-J
,
Soret-Dulphy
J
,
Resche-Rigon
M
, et al
.
Ruxopeg, a multi-center Bayesian phase 1/2 adaptive randomized trial of the combination of ruxolitinib and pegylated interferon alpha 2a in patients with myeloproliferative neoplasm (MPN)-associated myelofibrosis
.
Blood
.
2018
;
132
(
suppl 1
):
581
.
50.
Gianelli
U
,
Vener
C
,
Bossi
A
, et al
.
The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis
.
Mod Pathol
.
2012
;
25
(
9
):
1193
-
1202
.
51.
Kvasnicka
HM
,
Beham-Schmid
C
,
Bob
R
, et al
.
Problems and pitfalls in grading of bone marrow fibrosis, collagen deposition and osteosclerosis - a consensus-based study
.
Histopathology
.
2016
;
68
(
6
):
905
-
915
.
52.
Mesa
R
,
Jamieson
C
,
Bhatia
R
, et al
.
Myeloproliferative neoplasms, version 2.2017, NCCN clinical practice guidelines in oncology
.
J Natl Compr Canc Netw
.
2016
;
14
(
12
):
1572
-
1611
.
53.
Mesa
RA
,
Zimmerman
C
,
Kang
LL
, et al
.
Proposal of an endpoint for a phase III clinical study of essential thrombocythemia: balancing between short term effects and long term benefits
.
J Clin Oncol
.
2019
;
37
(
15 suppl
):
7055
.
54.
Passamonti
F
,
Cervantes
F
,
Vannucchi
AM
, et al
.
A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment)
.
Blood
.
2010
;
115
(
9
):
1703
-
1708
.
55.
Gangat
N
,
Caramazza
D
,
Vaidya
R
, et al
.
DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status
.
J Clin Oncol
.
2011
;
29
(
4
):
392
-
397
.
56.
Guglielmelli
P
,
Lasho
TL
,
Rotunno
G
, et al
.
MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
4
):
310
-
318
.
57.
Tefferi
A
,
Guglielmelli
P
,
Lasho
TL
, et al
.
MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
17
):
1769
-
1770
.
58.
Passamonti
F
,
Giorgino
T
,
Mora
B
, et al
.
A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis
.
Leukemia
.
2017
;
31
(
12
):
2726
-
2731
.
You do not currently have access to this content.