Abstract

Myelodysplastic syndromes are clonal myeloid neoplasms that primarily present in older adults. Although leukemia develops in approximately 25% to 30% of individuals, the significantly shortened survival in this population is attributed more commonly to nonleukemic causes. The current prognostic scoring systems for leukemia and overall survival based on disease characteristics are becoming increasingly sophisticated and accurate with the incorporation of molecular data. The addition of patient-related factors such as comorbidity, disability, frailty, and fatigue to these new models may improve their predictive power for overall survival, treatment toxicity, and health care costs. To improve the generalizability of clinical trial results to the real world, geriatric assessment testing should become a standard of care in MDS clinical trials.

References

References
1.
Greenberg
P
,
Cox
C
,
LeBeau
MM
, et al
.
International scoring system for evaluating prognosis in myelodysplastic syndromes
.
Blood
.
1997
;
89
(
6
):
2079
-
2088
.
2.
Malcovati
L
,
Germing
U
,
Kuendgen
A
, et al
.
Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes
.
J Clin Oncol
.
2007
;
25
(
23
):
3503
-
3510
.
3.
Kantarjian
H
,
O’Brien
S
,
Ravandi
F
, et al
.
Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System
.
Cancer
.
2008
;
113
(
6
):
1351
-
1361
.
4.
Greenberg
PL
,
Tuechler
H
,
Schanz
J
, et al
.
Revised international prognostic scoring system for myelodysplastic syndromes
.
Blood
.
2012
;
120
(
12
):
2454
-
2465
.
5.
Balleari
E
,
Salvetti
C
,
Del Corso
L
, et al
.
Age and comorbidities deeply impact on clinical outcome of patients with myelodysplastic syndromes
.
Leuk Res
.
2015
;
39
(
8
):
846
-
852
.
6.
Bejar
R
,
Papaemmanuil
E
,
Haferlach
T
, et al
.
Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee [abstract]
Blood
.
2015
;
126
(
23
):
907
.
7.
Nazha
A
,
Al-Issa
K
,
Hamilton
BK
, et al
.
Adding molecular data to prognostic models can improve predictive power in treated patients with myelodysplastic syndromes
.
Leukemia
.
2017
;
31
(
12
):
2848
-
2850
.
8.
Ma
X
.
Epidemiology of myelodysplastic syndromes
.
Am J Med
.
2012
;
125
(
7 suppl
):
S2
-
S5
.
9.
Ma
X
,
Does
M
,
Raza
A
,
Mayne
ST
.
Myelodysplastic syndromes: incidence and survival in the United States
.
Cancer
.
2007
;
109
(
8
):
1536
-
1542
.
10.
Rollison
DE
,
Howlader
N
,
Smith
MT
, et al
.
Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs
.
Blood
.
2008
;
112
(
1
):
45
-
52
.
11.
Nomdedeu
M
,
Pereira
A
,
Ramos
F
, et al
;
Spanish MDS Group
.
Excess mortality in the myelodysplastic syndromes
.
Am J Hematol
.
2017
;
92
(
2
):
149
-
154
.
12.
Kanapuru
B
,
Singh
H
,
Myers
A
, et al
.
Enrollment of older adults in clinical trials evaluating patients with hematologic malignancies: the Food and Drug Administration (FDA) experience
.
Blood
.
2017
;
130
(
suppl 1
):
861
.
13.
Scher
KS
,
Hurria
A
.
Under-representation of older adults in cancer registration trials: known problem, little progress
.
J Clin Oncol
.
2012
;
30
(
17
):
2036
-
2038
.
14.
Anger
C
,
Canta
FAB
,
Mistry
H
,
Mitrofan
L
,
Karanis
YB
.
‘Research’ vs ‘real world’ patients: the representativeness of clinical trial participants
.
Ann. Oncol
.
2016
;
27
(
suppl_6
):
1570P
.
15.
Bernal
T
,
Martínez-Camblor
P
,
Sánchez-García
J
, et al
;
Spanish Society of Hematology
.
Effectiveness of azacitidine in unselected high-risk myelodysplastic syndromes: results from the Spanish registry
.
Leukemia
.
2015
;
29
(
9
):
1875
-
1881
.
16.
Zeidan
AM
,
Sekeres
MA
,
Garcia-Manero
G
, et al
;
MDS Clinical Research Consortium
.
Comparison of risk stratification tools in predicting outcomes of patients with higher-risk myelodysplastic syndromes treated with azanucleosides
.
Leukemia
.
2016
;
30
(
3
):
649
-
657
.
17.
Itzykson
R
,
Thépot
S
,
Quesnel
B
, et al
;
Groupe Francophone des Myelodysplasies(GFM)
.
Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine
.
Blood
.
2011
;
117
(
2
):
403
-
411
.
18.
Zeidan
AM
,
Stahl
M
,
Sekeres
MA
,
Steensma
DP
,
Komrokji
RS
,
Gore
SD
.
A call for action: Increasing enrollment of untreated patients with higher-risk myelodysplastic syndromes in first-line clinical trials
.
Cancer
.
2017
;
123
(
19
):
3662
-
3672
.
19.
Dinmohamed
AG
,
van Norden
Y
,
Visser
O
, et al
.
Effectiveness of azacitidine for the treatment of higher-risk myelodysplastic syndromes in daily practice: results from the Dutch population-based PHAROS MDS registry
.
Leukemia
.
2015
;
29
(
12
):
2449
-
2451
.
20.
Fenaux
P
,
Mufti
GJ
,
Santini
V
, et al
.
Azacitidine (AZA) treatment prolongs overall survival (OS) in higher-risk MDS patients compared with conventional care regimens (CCR): results of the AZA-001 phase III study [abstract]
.
Blood
.
2007
;
110
(
11
):
817
.
21.
Mozessohn
L
,
Cheung
MC
,
Fallahpour
S
, et al
.
Azacitidine in the ‘real-world’: an evaluation of 1101 higher-risk myelodysplastic syndrome/low blast count acute myeloid leukaemia patients in Ontario, Canada
.
Br J Haematol
.
2018
;
181
(
6
):
803
-
815
.
22.
Extermann
M
.
Measurement and impact of comorbidity in older cancer patients
.
Crit Rev Oncol Hematol
.
2000
;
35
(
3
):
181
-
200
.
23.
Charlson
ME
,
Pompei
P
,
Ales
KL
,
MacKenzie
CR
.
A new method of classifying prognostic comorbidity in longitudinal studies: development and validation
.
J Chronic Dis
.
1987
;
40
(
5
):
373
-
383
.
24.
Sorror
ML
,
Maris
MB
,
Storb
R
, et al
.
Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT
.
Blood
.
2005
;
106
(
8
):
2912
-
2919
.
25.
Naqvi
K
,
Garcia-Manero
G
,
Sardesai
S
, et al
.
Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model
.
J Clin Oncol
.
2011
;
29
(
16
):
2240
-
2246
.
26.
Della Porta
MG
,
Malcovati
L
,
Strupp
C
, et al
.
Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome
.
Haematologica
.
2011
;
96
(
3
):
441
-
449
.
27.
Paleri
V
,
Wight
RG
.
Applicability of the adult comorbidity evaluation - 27 and the Charlson indexes to assess comorbidity by notes extraction in a cohort of United Kingdom patients with head and neck cancer: a retrospective study
.
J Laryngol Otol
.
2002
;
116
(
3
):
200
-
205
.
28.
Daver
N
,
Naqvi
K
,
Jabbour
E
, et al
.
Impact of comorbidities by ACE-27 in the revised-IPSS for patients with myelodysplastic syndromes
.
Am J Hematol
.
2014
;
89
(
5
):
509
-
516
.
29.
van Spronsen
MF
,
Ossenkoppele
GJ
,
Holman
R
,
van de Loosdrecht
AA
.
Improved risk stratification by the integration of the revised international prognostic scoring system with the myelodysplastic syndromes comorbidity index
.
Eur J Cancer
.
2014
;
50
(
18
):
3198
-
3205
.
30.
Zipperer
E
,
Tanha
N
,
Strupp
C
, et al
.
The myelodysplastic syndrome-comorbidity index provides additional prognostic information on patients stratified according to the revised international prognostic scoring system
.
Haematologica
.
2014
;
99
(
3
):
e31
-
e32
.
31.
Koreth
J
,
Pidala
J
,
Perez
WS
, et al
.
Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis
.
J Clin Oncol
.
2013
;
31
(
21
):
2662
-
2670
.
32.
Greenberg
PL
,
Stone
RM
,
Al-Kali
A
, et al
.
Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology
.
J Natl Compr Canc Netw
.
2017
;
15
(
1
):
60
-
87
.
33.
Malcovati
L
,
Hellström-Lindberg
E
,
Bowen
D
, et al
;
European Leukemia Net
.
Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet
.
Blood
.
2013
;
122
(
17
):
2943
-
2964
.
34.
Sorror
ML
,
Sandmaier
BM
,
Storer
BE
, et al
.
Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation
.
J Clin Oncol
.
2007
;
25
(
27
):
4246
-
4254
.
35.
Sorror
ML
,
Storb
RF
,
Sandmaier
BM
, et al
.
Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation
.
J Clin Oncol
.
2014
;
32
(
29
):
3249
-
3256
.
36.
de Witte
T
,
Bowen
D
,
Robin
M
, et al
.
Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel
.
Blood
.
2017
;
129
(
13
):
1753
-
1762
.
37.
Hurria
A
,
Togawa
K
,
Mohile
SG
, et al
.
Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study
.
J Clin Oncol
.
2011
;
29
(
25
):
3457
-
3465
.
38.
Extermann
M
,
Boler
I
,
Reich
RR
, et al
.
Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score
.
Cancer
.
2012
;
118
(
13
):
3377
-
3386
.
39.
Wehmeyer
J
,
Zaiss
M
,
Losem
C
, et al
.
Impact of performance status and transfusion dependency on outcome of patients with myelodysplastic syndrome, acute myeloid leukemia and chronic myelomonocytic leukemia treated with azacitidine (PIAZA study)
.
Eur J Haematol
.
2018
;
101
(
6
):
766
-
773
.
40.
Breccia
M
,
Salaroli
A
,
Loglisci
G
,
Finsinger
P
,
Serrao
A
,
Alimena
G
.
MDS-specific comorbidity index is useful to identify myelodysplastic patients who can have better outcome with 5-azacitidine
.
Haematologica
.
2012
;
97
(
2
):
e2
.
41.
Austin
PC
,
van Walraven
C
,
Wodchis
WP
,
Newman
A
,
Anderson
GM
.
Using the Johns Hopkins Aggregated Diagnosis Groups (ADGs) to predict mortality in a general adult population cohort in Ontario, Canada
.
Med Care
.
2011
;
49
(
10
):
932
-
939
.
42.
Weiner
JP
,
Abrams
C
,
Bodycombe
D
.
The Johns Hopkins ACG case-mix system version 6.0 release notes
.
Baltimore
:
Johns Hopkins Bloomberg School of Public Health
;
2003
.
43.
Mozessohn
L
,
Cheung
M
,
Mittmann
N
,
Earle
CC
,
Liu
N
,
Buckstein
R
.
High healthcare utilization and costs in patients with higher-risk MDS/low blast count AML treated with azacitidine in Ontario, Canada
.
Blood
.
2018
;
132
(
suppl 1
):
834
-
834
.
44.
de Swart
L
,
Smith
A
,
Johnston
TW
, et al
.
Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry
.
Br J Haematol
.
2015
;
170
(
3
):
372
-
383
.
45.
Wildiers
H
,
Heeren
P
,
Puts
M
, et al
.
International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer
.
J Clin Oncol
.
2014
;
32
(
24
):
2595
-
2603
.
46.
Stauder
R
,
Yu
G
,
Koinig
KA
, et al
.
Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study
.
Leukemia
.
2018
;
32
(
6
):
1380
-
1392
.
47.
Steensma
DP
,
Heptinstall
KV
,
Johnson
VM
, et al
.
Common troublesome symptoms and their impact on quality of life in patients with myelodysplastic syndromes (MDS): results of a large internet-based survey
.
Leuk Res
.
2008
;
32
(
5
):
691
-
698
.
48.
Efficace
F
,
Gaidano
G
,
Breccia
M
, et al
.
Prevalence, severity and correlates of fatigue in newly diagnosed patients with myelodysplastic syndromes
.
Br J Haematol
.
2015
;
168
(
3
):
361
-
370
.
49.
Efficace
F
,
Gaidano
G
,
Breccia
M
, et al
.
Prognostic value of self-reported fatigue on overall survival in patients with myelodysplastic syndromes: a multicentre, prospective, observational, cohort study
.
Lancet Oncol
.
2015
;
16
(
15
):
1506
-
1514
.
50.
Efficace
F
,
Cottone
F
,
Abel
G
, et al
.
Patient-reported outcomes enhance the survival prediction of traditional disease risk classifications: an international study in patients with myelodysplastic syndromes
.
Cancer
.
2018
;
124
(
6
):
1251
-
1259
.
51.
Deschler
B
,
Ihorst
G
,
Platzbecker
U
, et al
.
Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome
.
Haematologica
.
2013
;
98
(
2
):
208
-
216
.
52.
Molga
A
,
Wall
M
,
Chhetri
R
, et al
.
Comprehensive geriatric assessment predicts azacitidine treatment duration and survival in older patients with myelodysplastic syndromes [published online ahead of print 22 April 2019]
.
J Geriatr Oncol
.
doi:10.1016/j.jgo.2019.02.002
.
53.
Leitch
HA
,
Parmar
A
,
Wells
RA
, et al
.
Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis
.
Br J Haematol
.
2017
;
179
(
1
):
83
-
97
.
54.
Fega
KR
,
Abel
GA
,
Motyckova
G
, et al
.
Non-hematologic predictors of mortality improve the prognostic value of the international prognostic scoring system for MDS in older adults
.
J Geriatr Oncol
.
2015
;
6
(
4
):
288
-
298
.
55.
Sevindik
OG
,
Guc
Z
,
Kahraman
S
, et al
.
Hypoalbuminemia is a surrogate biomarker of poor prognosis in myelodysplastic syndrome even when adjusting for comorbidities
.
Leuk Lymphoma
.
2015
;
56
(
9
):
2552
-
2555
.
56.
Morley
JE
,
Vellas
B
,
van Kan
GA
, et al
.
Frailty consensus: a call to action
.
J Am Med Dir Assoc
.
2013
;
14
(
6
):
392
-
397
.
57.
Abel
GA
,
Klepin
HD
.
Frailty and the management of hematologic malignancies
.
Blood
.
2018
;
131
(
5
):
515
-
524
.
58.
Huisingh-Scheetz
M
,
Walston
J
.
How should older adults with cancer be evaluated for frailty?
J Geriatr Oncol
.
2017
;
8
(
1
):
8
-
15
.
59.
Fried
LP
,
Tangen
CM
,
Walston
J
, et al
;
Cardiovascular Health Study Collaborative Research Group
.
Frailty in older adults: evidence for a phenotype
.
J Gerontol A Biol Sci Med Sci
.
2001
;
56
(
3
):
M146
-
M156
.
60.
Rockwood
K
,
Mitnitski
A
.
Frailty in relation to the accumulation of deficits
.
J Gerontol A Biol Sci Med Sci
.
2007
;
62
(
7
):
722
-
727
.
61.
Song
X
,
Mitnitski
A
,
Rockwood
K
.
Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation
.
J Am Geriatr Soc
.
2010
;
58
(
4
):
681
-
687
.
62.
Decoster
L
,
Van Puyvelde
K
,
Mohile
S
, et al
.
Screening tools for multidimensional health problems warranting a geriatric assessment in older cancer patients: an update on SIOG recommendations
.
Ann Oncol
.
2015
;
26
(
2
):
288
-
300
.
63.
Hamaker
ME
,
Jonker
JM
,
de Rooij
SE
,
Vos
AG
,
Smorenburg
CH
,
van Munster
BC
.
Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: a systematic review
.
Lancet Oncol
.
2012
;
13
(
10
):
e437
-
e444
.
64.
Saliba
D
,
Elliott
M
,
Rubenstein
LZ
, et al
.
The Vulnerable Elders Survey: a tool for identifying vulnerable older people in the community
.
J Am Geriatr Soc
.
2001
;
49
(
12
):
1691
-
1699
.
65.
Rockwood
K
,
Song
X
,
MacKnight
C
, et al
.
A global clinical measure of fitness and frailty in elderly people
.
CMAJ
.
2005
;
173
(
5
):
489
-
495
.
66.
Martinez-Tapia
C
,
Canoui-Poitrine
F
,
Bastuji-Garin
S
, et al
;
ELCAPA Study Group
.
Optimizing the G8 screening tool for older patients with cancer: diagnostic performance and validation of a six-item version
.
Oncologist
.
2016
;
21
(
2
):
188
-
195
.
67.
Turner
G
,
Clegg ABritish Geriatrics SocietyAge UK
;
Royal College of General Practioners. Best practice guidelines for the management of frailty: a British Geriatrics Society, Age UK and Royal College of General Practitioners report
.
Age Ageing
.
2014
;
43
(
6
):
744
-
747
.
68.
Hamaker
ME
,
Mitrovic
M
,
Stauder
R
.
The G8 screening tool detects relevant geriatric impairments and predicts survival in elderly patients with a haematological malignancy
.
Ann Hematol
.
2014
;
93
(
6
):
1031
-
1040
.
69.
Buckstein
R
,
Wells
RA
,
Zhu
N
, et al
.
Patient-related factors independently impact overall survival in patients with myelodysplastic syndromes: an MDS-CAN prospective study
.
Br J Haematol
.
2016
;
174
(
1
):
88
-
101
.
70.
Sakatoku
K
,
Takeoka
Y
,
Araki
T
, et al
.
Combination of frailty status and comorbidity score improves the prediction of survival in patients with myelodysplastic syndrome due to good predictive capability for infection-related mortality
.
Blood
.
2016
;
128
(
22
):
1995
.
71.
Starkman
R
,
Wells
RA
,
Chodirker
L
, et al
.
An MDS specific frailty index based on cumulative deficits adds independent prognostic value to established clinical prognostic scoring systems
.
Blood
.
2017
;
130
(
suppl 1
):
1686
.
72.
Blunt
DN
,
Wells
RA
,
Chodirker
L
, et al
.
Predictive factors of overall survival and the completion of four cycles of azacitidine: an MDS-CAN study
.
Blood
.
2017
;
130
(
suppl 1
):
4253
.
73.
Nazha
A
,
Komrokji
RS
,
Meggendorfer
M
, et al
.
A personalized prediction model to risk stratify patients with myelodysplastic syndromes
.
Blood
.
2018
;
132
(
suppl 1
):
793
.
74.
Bammer
C
,
Sperr
WR
,
Kemmler
G
, et al
.
Clustering of comorbidities is related to age and sex and impacts clinical outcome in myelodysplastic syndromes
.
J Geriatr Oncol
.
2014
;
5
(
3
):
299
-
306
.
75.
Falantes
JF
,
Márquez-Malaver
FJ
,
Knight
T
, et al
.
The incorporation of comorbidities in the prognostication of patients with lower-risk myelodysplastic syndrome
.
Leuk Lymphoma
.
2017
;
58
(
8
):
1893
-
1902
.
76.
Sperr
WR
,
Kundi
M
,
Wimazal
F
, et al
.
Proposed score for survival of patients with myelodysplastic syndromes
.
Eur J Clin Invest
.
2013
;
43
(
11
):
1120
-
1128
.
77.
Breccia
M
,
Federico
V
,
Latagliata
R
, et al
.
Evaluation of comorbidities at diagnosis predicts outcome in myelodysplastic syndrome patients
.
Leuk Res
.
2011
;
35
:
159
-
162
.
You do not currently have access to this content.