Abstract

Growing evidence suggests that human microbiota likely influence diverse processes including hematopoiesis, chemotherapy metabolism, and efficacy, as well as overall survival in patients with hematologic malignancies and other cancers. Both host genetic susceptibility and host-microbiota interactions may impact cancer risk and response to treatment; however, microbiota have the potential to be uniquely modifiable and accessible targets for treatment. Here, we focus on strategies to modify microbiota composition and function in patients with cancer. First, we evaluate the use of fecal microbiota transplant to restore microbial equilibrium following perturbation by antibiotics and chemotherapy, and as a treatment of complications of hematopoietic stem cell transplantation (HSCT), such as graft-versus-host disease and colonization with multidrug-resistant organisms. We then address the potential use of both probiotics and dietary prebiotic compounds in targeted modulation of the microbiota intended to improve outcomes in hematologic diseases. With each type of therapy, we highlight the role that abnormal, or dysbiotic, microbiota play in disease, treatment efficacy, and toxicity and evaluate their potential promise as emerging strategies for microbiota manipulation in patients with hematologic malignancies and in those undergoing HSCT.

References

References
1.
Staffas
A
,
van den Brink
M
.
The intestinal flora is required for post-transplant hematopoiesis in recipients of a hematopoietic stem cell transplantation
.
Bone Marrow Transplant
.
2019
;
54
(
suppl 2
):
756
-
758
.
2.
Gury-BenAri
M
,
Thaiss
CA
,
Serafini
N
, et al
.
The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome
.
Cell
.
2016
;
166
(
5
):
1231
-
1246.e13
.
3.
Viaud
S
,
Saccheri
F
,
Mignot
G
, et al
.
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
.
Science
.
2013
;
342
(
6161
):
971
-
976
.
4.
Gerassy-Vainberg
S
,
Blatt
A
,
Danin-Poleg
Y
, et al
.
Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction
.
Gut
.
2018
;
67
(
1
):
97
-
107
.
5.
Jenq
RR
,
Taur
Y
,
Devlin
SM
, et al
.
Intestinal blautia is associated with reduced death from graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2015
;
21
(
8
):
1373
-
1383
.
6.
Taur
Y
,
Jenq
RR
,
Perales
M-A
, et al
.
The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation
.
Blood
.
2014
;
124
(
7
):
1174
-
1182
.
7.
Khoruts
A
,
Sadowsky
MJ
.
Understanding the mechanisms of faecal microbiota transplantation
.
Nat Rev Gastroenterol Hepatol
.
2016
;
13
(
9
):
508
-
516
.
8.
Le Bastard
Q
,
Ward
T
,
Sidiropoulos
D
, et al
.
Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice
.
Sci Rep
.
2018
;
8
(
1
):
6219
.
9.
Cui
M
,
Xiao
H
,
Li
Y
, et al
.
Faecal microbiota transplantation protects against radiation-induced toxicity
.
EMBO Mol Med
.
2017
;
9
(
4
):
448
-
461
.
10.
Davids
MS
,
Kim
HT
,
Bachireddy
P
, et al
;
Leukemia and Lymphoma Society Blood Cancer Research Partnership
.
Ipilimumab for patients with relapse after allogeneic transplantation
.
N Engl J Med
.
2016
;
375
(
2
):
143
-
153
.
11.
Goodman
A
,
Patel
SP
,
Kurzrock
R
.
PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas
.
Nat Rev Clin Oncol
.
2017
;
14
(
4
):
203
-
220
.
12.
Routy
B
,
Le Chatelier
E
,
Derosa
L
, et al
.
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
.
Science
.
2018
;
359
(
6371
):
91
-
97
.
13.
Gopalakrishnan
V
,
Spencer
CN
,
Nezi
L
, et al
.
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
.
Science
.
2018
;
359
(
6371
):
97
-
103
.
14.
Matson
V
,
Fessler
J
,
Bao
R
, et al
.
The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients
.
Science
.
2018
;
359
(
6371
):
104
-
108
.
15.
Dubin
K
,
Callahan
MK
,
Ren
B
, et al
.
Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis
.
Nat Commun
.
2016
;
7
:
10391
.
16.
Chaput
N
,
Lepage
P
,
Coutzac
C
, et al
.
Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab
.
Ann Oncol
.
2017
;
28
(
6
):
1368
-
1379
.
17.
Wang
F
,
Yin
Q
,
Chen
L
,
Davis
MM
.
Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade
.
Proc Natl Acad Sci USA
.
2018
;
115
(
1
):
157
-
161
.
18.
Wang
Y
,
Wiesnoski
DH
,
Helmink
BA
, et al
.
Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis [published correction appears in Nat Med. 2019;25(1):188]
.
Nat Med
.
2018
;
24
(
12
):
1804
-
1808
.
19.
Andermann
TM
,
Peled
JU
,
Ho
C
, et al
;
Blood and Marrow Transplant Clinical Trials Network
.
The microbiome and hematopoietic cell transplantation: past, present, and future
.
Biol Blood Marrow Transplant
.
2018
;
24
(
7
):
1322
-
1340
.
20.
Simms-Waldrip
TR
,
Sunkersett
G
,
Coughlin
LA
, et al
.
Antibiotic-induced depletion of anti-inflammatory clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients
.
Biol Blood Marrow Transplant
.
2017
;
23
(
5
):
820
-
829
.
21.
Kakihana
K
,
Fujioka
Y
,
Suda
W
, et al
.
Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut
.
Blood
.
2016
;
128
(
16
):
2083
-
2088
.
22.
Spindelboeck
W
,
Schulz
E
,
Uhl
B
, et al
.
Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease
.
Haematologica
.
2017
;
102
(
5
):
e210
-
e213
.
23.
Qi
X
,
Li
X
,
Zhao
Y
, et al
.
Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study
.
Front Immunol
.
2018
;
9
:
2195
.
24.
Kaito
S
,
Toya
T
,
Yoshifuji
K
, et al
.
Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease
.
Blood Adv
.
2018
;
2
(
22
):
3097
-
3101
.
25.
Jiang
Z-D
,
Jenq
RR
,
Ajami
NJ
, et al
.
Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: A randomized clinical trial
.
PLoS One
.
2018
;
13
(
11
):
e0205064
.
26.
DeFilipp
Z
,
Peled
JU
,
Li
S
, et al
.
Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity
.
Blood Adv
.
2018
;
2
(
7
):
745
-
753
.
27.
Taur
Y
,
Coyte
K
,
Schluter
J
, et al
.
Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant
.
Sci Transl Med
.
2018
;
10
(
460
).
28.
Manges
AR
,
Steiner
TS
,
Wright
AJ
.
Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review
.
Infect Dis (Lond)
.
2016
;
48
(
8
):
587
-
592
.
29.
Biliński
J
,
Grzesiowski
P
,
Muszyński
J
, et al
.
Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host
.
Arch Immunol Ther Exp (Warsz)
.
2016
;
64
(
3
):
255
-
258
.
30.
Biliński
J
,
Grzesiowski
P
,
Sorensen
N
, et al
.
Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study
.
Clin Infect Dis
.
2017
;
65
(
3
):
364
-
370
.
31.
Innes
AJ
,
Mullish
BH
,
Fernando
F
, et al
.
Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality
.
Bone Marrow Transplant
.
2017
;
52
(
10
):
1452
-
1454
.
32.
Battipaglia
G
,
Malard
F
,
Rubio
MT
, et al
.
Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematological malignancies carrying multidrug-resistance bacteria
.
Haematologica
.
2019
;
104
(
8
):
1682
-
1688
.
33.
Bajaj
JS
,
Kassam
Z
,
Fagan
A
, et al
.
Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial
.
Hepatology
.
2017
;
66
(
6
):
1727
-
1738
.
34.
Shogbesan
O
,
Poudel
DR
,
Victor
S
, et al
.
A systematic review of the efficacy and safety of fecal microbiota transplant for Clostridium difficile infection in immunocompromised patients
.
Can J Gastroenterol Hepatol
.
2018
;
2018
:
1394379
.
35.
Center for Biologics Evaluation
.
Research. Safety Communication on Use of FMT and MDROs
.
Silver Spring, MD
:
US Food and Drug Administration
;
2019
.
36.
Khanna
S
,
Pardi
DS
,
Kelly
CR
, et al
.
A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection
.
J Infect Dis
.
2016
;
214
(
2
):
173
-
181
.
37.
Henn
M
,
Ford
C
,
O’Brien
E
, et al
.
Gastrointestinal tract microbiome dynamics following treatment with SER-109, an investigational oral microbiome therapeutic to reduce the recurrence of Clostridium difficile infection (CDI) [abstract]
.
Open Forum Infect Dis
.
2017
;
4
(
suppl 1
):
S389
-
S390
.
38.
Ott
SJ
,
Waetzig
GH
,
Rehman
A
, et al
.
Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection
.
Gastroenterology
.
2017
;
152
(
4
):
799
-
811.e7
.
39.
Wei
D
,
Heus
P
,
van de Wetering
FT
,
van Tienhoven
G
,
Verleye
L
,
Scholten
RJ
.
Probiotics for the prevention or treatment of chemotherapy- or radiotherapy-related diarrhoea in people with cancer
.
Cochrane Database Syst Rev
.
2018
;
8
:
CD008831
.
40.
Gerbitz
A
,
Schultz
M
,
Wilke
A
, et al
.
Probiotic effects on experimental graft-versus-host disease: let them eat yogurt
.
Blood
.
2004
;
103
(
11
):
4365
-
4367
.
41.
Gorshein
E
,
Wei
C
,
Ambrosy
S
, et al
.
Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation
.
Clin Transplant
.
2017
;
31
(
5
).
42.
Zmora
N
,
Zilberman-Schapira
G
,
Suez
J
, et al
.
Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features
.
Cell
.
2018
;
174
(
6
):
1388
-
1405.e21
.
43.
Bafeta
A
,
Koh
M
,
Riveros
C
,
Ravaud
P
.
Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review
.
Ann Intern Med
.
2018
;
169
(
4
):
240
-
247
.
44.
Cohen
SA
,
Woodfield
MC
,
Boyle
N
,
Stednick
Z
,
Boeckh
M
,
Pergam
SA
.
Incidence and outcomes of bloodstream infections among hematopoietic cell transplant recipients from species commonly reported to be in over-the-counter probiotic formulations
.
Transpl Infect Dis
.
2016
;
18
(
5
):
699
-
705
.
45.
Tanoue
T
,
Morita
S
,
Plichta
DR
, et al
.
A defined commensal consortium elicits CD8 T cells and anti-cancer immunity
.
Nature
.
2019
;
565
(
7741
):
600
-
605
.
46.
David
LA
,
Maurice
CF
,
Carmody
RN
, et al
.
Diet rapidly and reproducibly alters the human gut microbiome
.
Nature
.
2014
;
505
(
7484
):
559
-
563
.
47.
Albenberg
LG
,
Wu
GD
.
Diet and the intestinal microbiome: associations, functions, and implications for health and disease
.
Gastroenterology
.
2014
;
146
(
6
):
1564
-
1572
.
48.
Iyama
S
,
Sato
T
,
Tatsumi
H
, et al
.
Efficacy of enteral supplementation enriched with glutamine, fiber, and oligosaccharide on mucosal injury following hematopoietic stem cell transplantation
.
Case Rep Oncol
.
2014
;
7
(
3
):
692
-
699
.
49.
Gill
SR
,
Pop
M
,
Deboy
RT
, et al
.
Metagenomic analysis of the human distal gut microbiome
.
Science
.
2006
;
312
(
5778
):
1355
-
1359
.
50.
Walton
GE
,
Swann
JR
,
Gibson
GR
.
Prebiotics
. In:
Rosenberg
E
,
DeLong
EF
,
Lory
S
,
Stackebrandt
E
,
Thompson
F
, eds.
The Prokaryotes
.
Berlin/Heidelberg, Germany
:
Springer
;
2013
:
25
-
43
.
51.
Roediger
WE
.
Utilization of nutrients by isolated epithelial cells of the rat colon
.
Gastroenterology
.
1982
;
83
(
2
):
424
-
429
.
52.
Kelly
CJ
,
Zheng
L
,
Campbell
EL
, et al
.
Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
.
Cell Host Microbe
.
2015
;
17
(
5
):
662
-
671
.
53.
Smith
PM
,
Howitt
MR
,
Panikov
N
, et al
.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
.
Science
.
2013
;
341
(
6145
):
569
-
573
.
54.
Atarashi
K
,
Tanoue
T
,
Shima
T
, et al
.
Induction of colonic regulatory T cells by indigenous Clostridium species
.
Science
.
2011
;
331
(
6015
):
337
-
341
.
55.
Kaisar
MMM
,
Pelgrom
LR
,
van der Ham
AJ
,
Yazdanbakhsh
M
,
Everts
B
.
Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling
.
Front Immunol
.
2017
;
8
:
1429
.
56.
Qin
Y
,
Wade
PA
.
Crosstalk between the microbiome and epigenome: messages from bugs
.
J Biochem
.
2018
;
163
(
2
):
105
-
112
.
57.
Schulthess
J
,
Pandey
S
,
Capitani
M
, et al
.
The short chain fatty acid butyrate imprints an antimicrobial program in macrophages
.
Immunity
.
2019
;
50
(
2
):
432
-
445.e7
.
58.
Figueroa
ME
,
Lugthart
S
,
Li
Y
, et al
.
DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia
.
Cancer Cell
.
2010
;
17
(
1
):
13
-
27
.
59.
Yu
D-H
,
Gadkari
M
,
Zhou
Q
, et al
.
Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome
.
Genome Biol
.
2015
;
16
:
211
.
60.
Ley
TJ
,
Ding
L
,
Walter
MJ
, et al
.
DNMT3A mutations in acute myeloid leukemia
.
N Engl J Med
.
2010
;
363
(
25
):
2424
-
2433
.
61.
Schoener
CA
,
Carillo-Conde
B
,
Hutson
HN
,
Peppas
NA
.
An inulin and doxorubicin conjugate for improving cancer therapy
.
J Drug Deliv Sci Technol
.
2013
;
23
(
2
):
111
-
118
.
62.
Mao
Y
,
Nobaek
S
,
Kasravi
B
, et al
.
The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats
.
Gastroenterology
.
1996
;
111
(
2
):
334
-
344
.
63.
Mao
Y
,
Kasravi
B
,
Nobaek
S
, et al
.
Pectin-supplemented enteral diet reduces the severity of methotrexate induced enterocolitis in rats
.
Scand J Gastroenterol
.
1996
;
31
(
6
):
558
-
567
.
64.
Lin
XB
,
Farhangfar
A
,
Valcheva
R
, et al
.
The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats
.
PLoS One
.
2014
;
9
(
1
):
e83644
.
65.
Gammill
HS
,
Milano
F
,
Nelson
JL
.
Breastfeeding and childhood leukemia incidence: duplicate data inadvertently included in the meta-analysis and consideration of possible confounders [published correction appears in JAMA Pediatr. 2016;170(3):299]
.
JAMA Pediatr
.
2015
;
169
(
11
):
1071
.
66.
Khandelwal
P
,
Andersen
H
,
Romick-Rosendale
L
, et al
.
A pilot study of human milk to reduce intestinal inflammation after bone marrow transplant
.
Breastfeed Med
.
2019
;
14
(
3
):
193
-
202
.
67.
Good
M
,
Sodhi
CP
,
Egan
CE
, et al
.
Breast milk protects against the development of necrotizing enterocolitis through inhibition of Toll-like receptor 4 in the intestinal epithelium via activation of the epidermal growth factor receptor
.
Mucosal Immunol
.
2015
;
8
(
5
):
1166
-
1179
.
68.
Holtan
SG
,
Newell
LF
,
Cutler
C
, et al
.
Low EGF in myeloablative allotransplantation: association with severe acute GvHD in BMT CTN 0402
.
Bone Marrow Transplant
.
2017
;
52
(
9
):
1300
-
1303
.
69.
Gibson
GR
,
Hutkins
R
,
Sanders
ME
, et al
.
Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
.
Nat Rev Gastroenterol Hepatol
.
2017
;
14
(
8
):
491
-
502
.
70.
Lounder
DT
,
Khandelwal
P
,
Dandoy
CE
, et al
.
Lower levels of vitamin A are associated with increased gastrointestinal graft-versus-host disease in children
.
Blood
.
2017
;
129
(
20
):
2801
-
2807
.
71.
Grizotte-Lake
M
,
Zhong
G
,
Duncan
K
, et al
.
Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis
.
Immunity
.
2018
;
49
(
6
):
1103
-
1115.e6
.
72.
Lounder
DT
,
Khandelwal
P
,
Gloude
NJ
, et al
.
Interleukin-22 levels are increased in gastrointestinal graft-versus-host disease in children
.
Haematologica
.
2018
;
103
(
10
):
e480
-
e482
.
You do not currently have access to this content.