Abstract

Immunotherapies have been successfully developed for the treatment of B-cell acute lymphoblastic leukemia (B-ALL) with FDA approval of blinatumomab, inotuzumab, and tisagenlecleucel for relapsed or refractory patients. These agents target either CD19 or CD22, which are both expressed on the surface of the leukemic blasts in the majority of patients. The use of these agents has greatly transformed the landscape of available treatment, and it has provided curative therapy in some patients. As the field has matured, we are learning that for most patients, the currently available immunotherapies are not curative. Leukemic resistance to both CD19 and CD22 pressure has been described and is a major component of developed resistance to these therapies. Patients with B-ALL have developed CD19- or CD22-negative B-ALL, and in more rare cases, they have undergone lineage switch to acute myeloid leukemia. Current efforts are focusing on overcoming antigen escape, either by forced antigen expression or by dual-targeting therapies. A functional immune system is also required for maximal benefit of immunotherapy, particularly with chimeric antigen receptor (CAR) T-cell therapies. Data are now being produced that may allow for the prospective identification of patients whose immune deficits may be identified up front and predict failure. Preclinical work is focusing on additional engineering of CAR T cells to overcome these inherent immune deficits. Last, with improved knowledge of which patients are likely to benefit from immunotherapy as definitive treatment, those patients who are predicted to develop resistance may be prospectively recommended to undergo a consolidative hematopoietic cell transplant to lessen the recurrence risk.

References

References
1.
Shah
NN
,
Stevenson
MS
,
Yuan
CM
, et al
.
Characterization of CD22 expression in acute lymphoblastic leukemia
.
Pediatr Blood Cancer
.
2015
;
62
(
6
):
964
-
969
.
2.
Raponi
S
,
De Propris
MS
,
Intoppa
S
, et al
.
Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases
.
Leuk Lymphoma
.
2011
;
52
(
6
):
1098
-
1107
.
3.
Pulte
ED
,
Vallejo
J
,
Przepiorka
D
, et al
.
FDA supplemental approval: blinatumomab for treatment of relapsed and refractory precursor B-cell acute lymphoblastic leukemia
.
Oncologist
.
2018
;
23
(
11
):
1366
-
1371
.
4.
von Stackelberg
A
,
Locatelli
F
,
Zugmaier
G
, et al
.
Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia
.
J Clin Oncol
.
2016
;
34
(
36
):
4381
-
4389
.
5.
Choudhry
A
,
O’Brien
SM
.
Inotuzumab ozogamicin for the treatment of patients with acute lymphocytic leukemia
.
Drugs Today (Barc)
.
2017
;
53
(
12
):
653
-
665
.
6.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
7.
Orlando
EJ
,
Han
X
,
Tribouley
C
, et al
.
Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia
.
Nat Med
.
2018
;
24
(
10
):
1504
-
1506
.
8.
Mejstríková
E
,
Hrusak
O
,
Borowitz
MJ
, et al
.
CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment
.
Blood Cancer J
.
2017
;
7
(
12
):
659
.
9.
Jabbour
E
,
Düll
J
,
Yilmaz
M
, et al
.
Outcome of patients with relapsed/refractory acute lymphoblastic leukemia after blinatumomab failure: no change in the level of CD19 expression
.
Am J Hematol
.
2018
;
93
(
3
):
371
-
374
.
10.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
11.
Bagashev
A
,
Sotillo
E
,
Tang
CH
, et al
.
CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum
.
Mol Cell Biol
.
2018
;
38
(
21
):
e00383-18
.
12.
Fischer
J
,
Paret
C
,
El Malki
K
, et al
.
CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis
.
J Immunother
.
2017
;
40
(
5
):
187
-
195
.
13.
Braig
F
,
Brandt
A
,
Goebeler
M
, et al
.
Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking
.
Blood
.
2017
;
129
(
1
):
100
-
104
.
14.
Gardner
R
,
Wu
D
,
Cherian
S
, et al
.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood
.
2016
;
127
(
20
):
2406
-
2410
.
15.
Rayes
A
,
McMasters
RL
,
O’Brien
MM
.
Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy
.
Pediatr Blood Cancer
.
2016
;
63
(
6
):
1113
-
1115
.
16.
Lucero
OM
,
Parker
K
,
Funk
T
, et al
.
Phenotype switch in acute lymphoblastic leukaemia associated with 3 years of persistent CAR T cell directed-CD19 selective pressure
.
Br J Haematol
.
2019
;
186
(
2
):
333
-
336
.
17.
Oberley
MJ
,
Gaynon
PS
,
Bhojwani
D
, et al
.
Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia
.
Pediatr Blood Cancer
.
2018
;
65
(
9
):
e27265
.
18.
Lin
S
,
Luo
RT
,
Ptasinska
A
, et al
.
Instructive role of MLL-fusion proteins revealed by a model of t(4;11) pro-B acute lymphoblastic leukemia
.
Cancer Cell
.
2016
;
30
(
5
):
737
-
749
.
19.
Jacoby
E
,
Nguyen
SM
,
Fountaine
TJ
, et al
.
CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity
.
Nat Commun
.
2016
;
7
(
1
):
12320
.
20.
Grupp
SA
,
Kalos
M
,
Barrett
D
, et al
.
Chimeric antigen receptor-modified T cells for acute lymphoid leukemia
.
N Engl J Med
.
2013
;
368
(
16
):
1509
-
1518
.
21.
Bhoj
VG
,
Arhontoulis
D
,
Wertheim
G
, et al
.
Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy
.
Blood
.
2016
;
128
(
3
):
360
-
370
.
22.
Pillai
V
,
Rosenthal
J
,
Muralidharan
K
, et al
.
Correlation of pre-CAR CD19 expression with responses and relapses after CAR T cell therapy [abstract]
.
J Clin Oncol
.
2018
;
36
(
15 suppl
):
3051
.
23.
Shah
BD
,
Oluwole
OO
,
Baer
MR
,
Bishop
MR
,
Holmes
HE
,
Schiller
GJ
.
Outcomes of patients (pts) treated with prior blinatumomab (Blin) in ZUMA-3: A study of KTE-C19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in adult pts with relapsed/refractory acute lymphoblastic leukemia (R/R ALL) [abstract]
.
J Clin Oncol
.
2018
;
36
(
15 suppl
):
7006
.
24.
Fry
TJ
,
Shah
NN
,
Orentas
RJ
, et al
.
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
.
Nat Med
.
2018
;
24
(
1
):
20
-
28
.
25.
Bhojwani
D
,
Sposto
R
,
Shah
NN
, et al
.
Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia [published correction appears in Leukemia. 2019;33(4):1061-1062]
.
Leukemia
.
2019
;
33
(
4
):
884
-
892
.
26.
Kantarjian
H
,
Thomas
D
,
Jorgensen
J
, et al
.
Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia
.
Cancer
.
2013
;
119
(
15
):
2728
-
2736
.
27.
Biberacher
V
,
Decker
T
,
Oelsner
M
, et al
.
The cytotoxicity of anti-CD22 immunotoxin is enhanced by bryostatin 1 in B-cell lymphomas through CD22 upregulation and PKC-βII depletion
.
Haematologica
.
2012
;
97
(
5
):
771
-
779
.
28.
Ramakrishna
S
,
Highfill
SL
,
Walsh
Z
, et al
.
Modulation of target antigen density improves CAR T-cell functionality and persistence [published online ahead of print 20 May 2019]
.
Clin Cancer Res
.
doi:10.1158/1078-0432.CCR-18-3784
.
29.
Qin
H
,
Ramakrishna
S
,
Nguyen
S
, et al
.
Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22
.
Mol Ther Oncolytics
.
2018
;
11
:
127
-
137
.
30.
Schultz
LM
,
Davis
KL
,
Baggott
C
, et al
.
Phase 1 study of CD19/CD22 bispecific chimeric antigen receptor (CAR) therapy in children and young adults with B cell acute lymphoblastic leukemia (ALL) [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
898
.
31.
Gardner
R
,
Annesley
C
,
Finney
O
, et al
.
Early clinical experience of CD19 × CD22 dual specific CAR T Cells for enhanced anti-leukemic targeting of acute lymphoblastic leukemia [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
278
.
32.
Amrolia
PJ
,
Wynn
R
,
Hough
R
, et al
.
Simultaneous targeting of CD19 and CD22: phase I study of AUTO3, a bicistronic chimeric antigen receptor (CAR) T-Cell therapy, in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL): Amelia Study
.
Blood
.
2018
;
132
(
suppl 1
):
279
.
33.
Qin
H
,
Cho
M
,
Haso
W
, et al
.
Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein
.
Blood
.
2015
;
126
(
5
):
629
-
639
.
34.
Ruella
M
,
Barrett
DM
,
Kenderian
SS
, et al
.
Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies
.
J Clin Invest
.
2016
;
126
(
10
):
3814
-
3826
.
35.
Duell
J
,
Dittrich
M
,
Bedke
T
, et al
.
Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL
.
Leukemia
.
2017
;
31
(
10
):
2181
-
2190
.
36.
Feucht
J
,
Kayser
S
,
Gorodezki
D
, et al
.
T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts
.
Oncotarget
.
2016
;
7
(
47
):
76902
-
76919
.
37.
Finney
OC
,
Brakke
HM
,
Rawlings-Rhea
S
, et al
.
CD19 CAR T cell product and disease attributes predict leukemia remission durability
.
J Clin Invest
.
2019
;
129
(
5
):
2123
-
2132
.
38.
Zhao
Z
,
Condomines
M
,
van der Stegen
SJC
, et al
.
Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells
.
Cancer Cell
.
2015
;
28
(
4
):
415
-
428
.
39.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
40.
Riddell
SR
,
Sommermeyer
D
,
Berger
C
, et al
.
Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition
.
Cancer J
.
2014
;
20
(
2
):
141
-
144
.
41.
Sommermeyer
D
,
Hudecek
M
,
Kosasih
PL
, et al
.
Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo
.
Leukemia
.
2016
;
30
(
2
):
492
-
500
.
42.
Lynn
RC
,
Weber
EW
,
Gennert
D
, et al
.
Engineering AP1 to combat CAR T cell exhaustion [abstract]
.
Cancer Res
.
2018
;
78
(
13 suppl
).
Abstract LB-112
.
43.
Eyquem
J
,
Mansilla-Soto
J
,
Giavridis
T
, et al
.
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
.
Nature
.
2017
;
543
(
7643
):
113
-
117
.
44.
Rafiq
S
,
Yeku
OO
,
Jackson
HJ
, et al
.
Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo
.
Nat Biotechnol
.
2018
;
36
(
9
):
847
-
856
.
45.
Webster
J
,
Luskin
MR
,
Prince
TG
, et al
.
Blinatumomab in combination with immune checkpoint inhibitors [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
557
.
46.
Tang
X
,
Yang
L
,
Li
Z
, et al
.
First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia
.
Am J Cancer Res
.
2018
;
8
(
6
):
1083
-
1089
.
47.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
48.
Maude
SL
,
Barrett
DM
,
Rheingold
SR
, et al
.
Efficacy of humanized CD19-targeted chimeric antigen receptor (CAR)-modified T cells in children and young adults with relapsed/refractory acute lymphoblastic leukemia
.
Blood
.
2016
;
128
(
22
):
217
.
49.
Aldoss
I
,
Song
J
,
Stiller
T
, et al
.
Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia
.
Am J Hematol
.
2017
;
92
(
9
):
858
-
865
.
50.
Rheingold
SR
,
Chen
LY
,
Maude
SL
, et al
.
Efficient trafficking of chimeric antigen receptor (CAR)-modified T cells to CSF and induction of durable CNS remissions in children with CNS/combined relapsed/refractory ALL
.
Blood
.
2015
;
126
(
23
):
3769
.
51.
Gust
J
,
Finney
OC
,
Li
D
, et al
.
Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy
.
Ann Neurol
.
2019
;
86
(
1
):
42
-
54
.
52.
Ceppi
F
,
Rivers
J
,
Annesley
C
, et al
.
Lymphocyte apheresis for chimeric antigen receptor T-cell manufacturing in children and young adults with leukemia and neuroblastoma
.
Transfusion
.
2018
;
58
(
6
):
1414
-
1420
.
53.
Singh
N
,
Perazzelli
J
,
Grupp
SA
,
Barrett
DM
.
Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies
.
Sci Transl Med
.
2016
;
8
(
320
):
320ra3
.
54.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
55.
Barrett
DM
,
Singh
N
,
Liu
X
, et al
.
Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy
.
Cytotherapy
.
2014
;
16
(
5
):
619
-
630
.
56.
Ruella
M
,
Xu
J
,
Barrett
DM
, et al
.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell
.
Nat Med
.
2018
;
24
(
10
):
1499
-
1503
.
57.
Qasim
W
,
Zhan
H
,
Samarasinghe
S
, et al
.
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
.
Sci Transl Med
.
2017
;
9
(
374
):
eaaj2013
.
58.
Benjamin
R
,
Graham
C
,
Yallop
D
, et al
.
Preliminary data on safety, cellular kinetics and anti-leukemic activity of UCART19, an allogeneic anti-CD19 CAR T-cell product, in a pool of adult and pediatric patients with high-risk CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
896
.
59.
Glienke
W
,
Esser
R
,
Priesner
C
, et al
.
Advantages and applications of CAR-expressing natural killer cells
.
Front Pharmacol
.
2015
;
6
:
21
.
60.
Liu
E
,
Tong
Y
,
Dotti
G
, et al
.
Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity
.
Leukemia
.
2018
;
32
(
2
):
520
-
531
.
61.
Oberschmidt
O
,
Kloess
S
,
Koehl
U
.
Redirected primary human chimeric antigen receptor natural killer cells as an “off-the-shelf immunotherapy” for improvement in cancer treatment
.
Front Immunol
.
2017
;
8
:
654
.
62.
Daher
M
,
Rezvani
K
.
Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering
.
Curr Opin Immunol
.
2018
;
51
:
146
-
153
.
63.
Gore
L
,
Locatelli
F
,
Zugmaier
G
, et al
.
Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia
.
Blood Cancer J
.
2018
;
8
(
9
):
80
.
64.
Gökbuget
N
,
Zugmaier
G
,
Klinger
M
, et al
.
Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia
.
Haematologica
.
2017
;
102
(
4
):
e132
-
e135
.
65.
Marks
DI
,
Kebriaei
P
,
Stelljes
M
, et al
.
Outcomes of allogeneic stem cell transplantation after inotuzumab ozogamicin treatment for relapsed or refractory acute lymphoblastic leukemia
.
Biol Blood Marrow Transplant
.
2019
;
25
(
9
):
1720
-
1729
.
66.
Park
JH
,
Rivière
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
67.
Summers
C
,
Annesley
C
,
Bleakley
M
,
Dahlberg
A
,
Jensen
MC
,
Gardner
R
.
Long term follow-up after SCRI-CAR19v1 reveals late recurrences as well as a survival advantage to consolidation with HCT after CAR T cell induced remission [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
967
.
You do not currently have access to this content.