Abstract

Cancer patients have an increased risk of venous thromboembolism (VTE). The rate of VTE varies with cancer type, with pancreatic cancer having one of the highest rates, suggesting that there are cancer type–specific mechanisms of VTE. Risk assessment scores, such as the Khorana score, have been developed to identify ambulatory cancer patients at high risk of VTE. However, the Khorana score performed poorly in discriminating pancreatic cancer patients at risk of VTE. Currently, thromboprophylaxis is not recommended for cancer outpatients. Recent clinical trials showed that factor Xa (FXa) inhibitors reduced VTE in high-risk cancer patients but also increased major bleeding. Understanding the mechanisms of cancer-associated thrombosis should lead to the development of safer antithrombotic drugs. Mouse models can be used to study the role of different prothrombotic pathways in cancer-associated thrombosis. Human and mouse studies support the notion that 2 prothrombotic pathways contribute to VTE in pancreatic cancer patients: tumor-derived, tissue factor–positive (TF+) extracellular vesicles (EVs), and neutrophils and neutrophil extracellular traps (NETs). In pancreatic cancer patients, elevated levels of plasma EVTF activity and citrullinated histone H3 (H3Cit), a NET biomarker, are independently associated with VTE. We observed increased levels of circulating tumor-derived TF+ EVs, neutrophils, cell-free DNA, and H3Cit in nude mice bearing human pancreatic tumors. Importantly, inhibition of tumor-derived human TF, depletion of neutrophils, or administration of DNAse I to degrade cell-free DNA (including NETs) reduced venous thrombosis in tumor-bearing mice. These studies demonstrate that tumor-derived TF+ EVs, neutrophils, and cell-free DNA contribute to venous thrombosis in a mouse model of pancreatic cancer.

References

References
1.
Stein
PD
,
Beemath
A
,
Meyers
FA
,
Skaf
E
,
Sanchez
J
,
Olson
RE
.
Incidence of venous thromboembolism in patients hospitalized with cancer
.
Am J Med
.
2006
;
119
(
1
):
60
-
68
.
2.
Timp
JF
,
Braekkan
SK
,
Versteeg
HH
,
Cannegieter
SC
.
Epidemiology of cancer-associated venous thrombosis
.
Blood
.
2013
;
122
(
10
):
1712
-
1723
.
3.
Khorana
AA
,
Yannicelli
D
,
McCrae
KR
, et al
.
Evaluation of US prescription patterns: Are treatment guidelines for cancer-associated venous thromboembolism being followed?
Thromb Res
.
2016
;
145
:
51
-
53
.
4.
Khorana
AA
,
Kuderer
NM
,
Culakova
E
,
Lyman
GH
,
Francis
CW
.
Development and validation of a predictive model for chemotherapy-associated thrombosis
.
Blood
.
2008
;
111
(
10
):
4902
-
4907
.
5.
Ay
C
,
Dunkler
D
,
Marosi
C
, et al
.
Prediction of venous thromboembolism in cancer patients
.
Blood
.
2010
;
116
(
24
):
5377
-
5382
.
6.
Pabinger
I
,
van Es
N
,
Heinze
G
, et al
.
A clinical prediction model for cancer-associated venous thromboembolism: a development and validation study in two independent prospective cohorts
.
Lancet Haematol
.
2018
;
5
(
7
):
e289
-
e298
.
7.
Mege
D
,
Crescence
L
,
Ouaissi
M
, et al
.
Fibrin-bearing microparticles: marker of thrombo-embolic events in pancreatic and colorectal cancers
.
Oncotarget
.
2017
;
8
(
57
):
97394
-
97406
.
8.
Muñoz Martín
AJ
,
García Alfonso
P
,
Rupérez Blanco
AB
,
Pérez Ramírez
S
,
Blanco Codesido
M
,
Martín Jiménez
M
.
Incidence of venous thromboembolism (VTE) in ambulatory pancreatic cancer patients receiving chemotherapy and analysis of Khorana’s predictive model
.
Clin Transl Oncol
.
2014
;
16
(
10
):
927
-
930
.
9.
Lyman
GH
,
Bohlke
K
,
Khorana
AA
, et al
;
American Society of Clinical Oncology
.
Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update 2014
.
J Clin Oncol
.
2015
;
33
(
6
):
654
-
656
.
10.
Carrier
M
,
Abou-Nassar
K
,
Mallick
R
, et al
.
Apixaban to prevent venous thromboembolism in patients with cancer
.
N Engl J Med
.
2019
;
380
(
8
):
711
-
719
.
11.
Khorana
AA
,
Soff
GA
,
Kakkar
AK
, et al
;
CASSINI Investigators
.
Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer
.
N Engl J Med
.
2019
;
380
(
8
):
720
-
728
.
12.
Hisada
Y
,
Mackman
N
.
Mouse models of cancer-associated thrombosis
.
Thromb Res
.
2018
;
164
(
suppl 1
):
S48
-
S53
.
13.
Thomas
GM
,
Panicot-Dubois
L
,
Lacroix
R
,
Dignat-George
F
,
Lombardo
D
,
Dubois
C
.
Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo
.
J Exp Med
.
2009
;
206
(
9
):
1913
-
1927
.
14.
Diaz
JA
,
Obi
AT
,
Myers
DD
Jr
, et al
.
Critical review of mouse models of venous thrombosis
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
3
):
556
-
562
.
15.
Hisada
Y
,
Ay
C
,
Auriemma
AC
,
Cooley
BC
,
Mackman
N
.
Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size
.
J Thromb Haemost
.
2017
;
15
(
11
):
2208
-
2217
.
16.
Wang
JG
,
Geddings
JE
,
Aleman
MM
, et al
.
Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer
.
Blood
.
2012
;
119
(
23
):
5543
-
5552
.
17.
György
B
,
Szabó
TG
,
Pásztói
M
, et al
.
Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles
.
Cell Mol Life Sci
.
2011
;
68
(
16
):
2667
-
2688
.
18.
Coumans
FAW
,
Brisson
AR
,
Buzas
EI
, et al
.
Methodological guidelines to study extracellular vesicles
.
Circ Res
.
2017
;
120
(
10
):
1632
-
1648
.
19.
Tesselaar
ME
,
Romijn
FP
,
Van Der Linden
IK
,
Prins
FA
,
Bertina
RM
,
Osanto
S
.
Microparticle-associated tissue factor activity: a link between cancer and thrombosis?
J Thromb Haemost
.
2007
;
5
(
3
):
520
-
527
.
20.
Thaler
J
,
Ay
C
,
Mackman
N
, et al
.
Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients
.
J Thromb Haemost
.
2012
;
10
(
7
):
1363
-
1370
.
21.
Bharthuar
A
,
Khorana
AA
,
Hutson
A
, et al
.
Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers
.
Thromb Res
.
2013
;
132
(
2
):
180
-
184
.
22.
van Es
N
,
Hisada
Y
,
Di Nisio
M
, et al
.
Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: A prospective cohort study
.
Thromb Res
.
2018
;
166
:
54
-
59
.
23.
Hisada
Y
,
Thålin
C
,
Lundström
S
,
Wallén
H
,
Mackman
N
.
Comparison of microvesicle tissue factor activity in non-cancer severely ill patients and cancer patients
.
Thromb Res
.
2018
;
165
:
1
-
5
.
24.
Khorana
AA
,
Francis
CW
,
Menzies
KE
, et al
.
Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer
.
J Thromb Haemost
.
2008
;
6
(
11
):
1983
-
1985
.
25.
Ramanathan
RK
,
Thomas
GW
,
Khorana
AA
, et al
.
A phase 2 study of PCI-27483, a factor VIIa inhibitor in combination with gemcitabine for advanced pancreatic cancer
.
Oncology
.
2019
;
96
(
4
):
217
-
222
.
26.
Collier
ME
,
Maraveyas
A
,
Ettelaie
C
.
Filamin-A is required for the incorporation of tissue factor into cell-derived microvesicles
.
Thromb Haemost
.
2014
;
111
(
4
):
647
-
655
.
27.
Ettelaie
C
,
Collier
ME
,
Featherby
S
,
Benelhaj
NE
,
Greenman
J
,
Maraveyas
A
.
Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression
.
Thromb J
.
2016
;
14
(
1
):
2
.
28.
Cronan
MR
,
Nakamura
K
,
Johnson
NL
, et al
.
Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis
.
Oncogene
.
2012
;
31
(
34
):
3889
-
3900
.
29.
Koizume
S
,
Ito
S
,
Yoshioka
Y
, et al
.
High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors
.
Thromb Haemost
.
2016
;
115
(
2
):
299
-
310
.
30.
Yu
JL
,
May
L
,
Lhotak
V
, et al
.
Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis
.
Blood
.
2005
;
105
(
4
):
1734
-
1741
.
31.
Davila
M
,
Robles-Carrillo
L
,
Unruh
D
, et al
.
Microparticle association and heterogeneity of tumor-derived tissue factor in plasma: is it important for coagulation activation?
J Thromb Haemost
.
2014
;
12
(
2
):
186
-
196
.
32.
Thomas
GM
,
Brill
A
,
Mezouar
S
, et al
.
Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice
.
J Thromb Haemost
.
2015
;
13
(
7
):
1310
-
1319
.
33.
Geddings
JE
,
Hisada
Y
,
Boulaftali
Y
, et al
.
Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice
.
J Thromb Haemost
.
2016
;
14
(
1
):
153
-
166
.
34.
Engelmann
B
,
Massberg
S
.
Thrombosis as an intravascular effector of innate immunity
.
Nat Rev Immunol
.
2013
;
13
(
1
):
34
-
45
.
35.
Brinkmann
V
,
Reichard
U
,
Goosmann
C
, et al
.
Neutrophil extracellular traps kill bacteria
.
Science
.
2004
;
303
(
5663
):
1532
-
1535
.
36.
Fuchs
TA
,
Brill
A
,
Wagner
DD
.
Neutrophil extracellular trap (NET) impact on deep vein thrombosis
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
8
):
1777
-
1783
.
37.
Martinod
K
,
Demers
M
,
Fuchs
TA
, et al
.
Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
21
):
8674
-
8679
.
38.
Mauracher
LM
,
Posch
F
,
Martinod
K
, et al
.
Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients
.
J Thromb Haemost
.
2018
;
16
(
3
):
508
-
518
.
39.
Demers
M
,
Krause
DS
,
Schatzberg
D
, et al
.
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
32
):
13076
-
13081
.
40.
Demers
M
,
Wong
SL
,
Martinod
K
, et al
.
Priming of neutrophils toward NETosis promotes tumor growth
.
OncoImmunology
.
2016
;
5
(
5
):
e1134073
.
41.
DuPre’
SA
,
Hunter
KW
Jr
.
Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors
.
Exp Mol Pathol
.
2007
;
82
(
1
):
12
-
24
.
42.
Leal
AC
,
Mizurini
DM
,
Gomes
T
, et al
.
Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis
.
Sci Rep
.
2017
;
7
(
1
):
6438
.
43.
Hisada
Y
,
Grover
SP
,
Maqsood
A
, et al
.
Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors [published online ahead of print 2 May 2019]
.
Haematologica
.
doi:10.3324/haematol.2019.217083
.
44.
El-Sayed
OM
,
Dewyer
NA
,
Luke
CE
, et al
.
Intact Toll-like receptor 9 signaling in neutrophils modulates normal thrombogenesis in mice
.
J Vasc Surg
.
2016
;
64
(
5
):
1450
-
1458,e1
.
You do not currently have access to this content.