Abstract

The role and use of minimal residual disease (MRD) testing has changed significantly over the past few years as it has become part of the routine care for response assessment in multiple myeloma. The most widely used standardized methods to assess MRD in myeloma in the bone marrow are multicolor flow cytometry and next-generation sequencing. Importantly, the depth of MRD negativity in the bone marrow correlates with improved progression-free survival and overall survival in myeloma. Whole-body position emission tomography–computed tomography and magnetic resonance imaging are also used to evaluate patchy and extramedullary disease, which may not be readily visible through bone marrow assessment. This article reviews a clinical case in which MRD testing, both in bone marrow and in functional imaging, is part of the standard of care. It also reviews the different modalities of MRD testing and current practice guidelines. Finally, patients with myeloma may be tested for MRD after treatment because this is part of the routine response assessment according to International Myeloma Working Group criteria and correlates with clinical outcomes. Important questions such as when to stop therapy for sustained MRD-negative patients or whether to change treatments for patients who go from MRD negative to positive without other evidence of disease relapse are being evaluated in clinical trials and remain controversial.

References

References
1.
Barlogie
B
,
Mitchell
A
,
van Rhee
F
,
Epstein
J
,
Morgan
GJ
,
Crowley
J
.
Curing myeloma at last: defining criteria and providing the evidence
.
Blood
.
2014
;
124
(
20
):
3043
-
3051
.
2.
Usmani
SZ
,
Hoering
A
,
Cavo
M
, et al
.
Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—an IMWG Research Project
.
Blood Cancer J
.
2018
;
8
(
12
):
123
.
3.
Thorsteinsdottir
S
,
Dickman
PW
,
Landgren
O
, et al
.
Dramatically improved survival in multiple myeloma patients in the recent decade: results from a Swedish population-based study
.
Haematologica
.
2018
;
103
(
9
):
e412
-
e415
.
4.
Landgren
O
,
Rajkumar
SV
.
New developments in diagnosis, prognosis, and assessment of response in multiple myeloma
.
Clin Cancer Res
.
2016
;
22
(
22
):
5428
-
5433
.
5.
Chaudhry
M
,
Steiner
R
,
Claussen
C
, et al
.
Carfilzomib-based combination regimens are highly effective frontline therapies for multiple myeloma and Waldenström’s macroglobulinemia
.
Leuk Lymphoma
.
2019
;
60
(
4
):
964
-
970
.
6.
Kumar
S
,
Paiva
B
,
Anderson
KC
, et al
.
International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma
.
Lancet Oncol
.
2016
;
17
(
8
):
e328
-
e346
.
7.
Munshi
NC
,
Avet-Loiseau
H
,
Rawstron
AC
, et al
.
Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis
.
JAMA Oncol
.
2017
;
3
(
1
):
28
-
35
.
8.
Hu
B
,
Thall
P
,
Milton
DR
, et al
.
High-risk myeloma and minimal residual disease postautologous-HSCT predict worse outcomes
.
Leuk Lymphoma
.
2019
;
60
(
2
):
442
-
452
.
9.
Tageja
N
,
Korde
N
,
Kazandjian
D
, et al
.
Combination therapy with carfilzomib, lenalidomide and dexamethasone (KRd) results in an unprecedented purity of the stem cell graft in newly diagnosed patients with myeloma
.
Bone Marrow Transplant
.
2018
;
53
(
11
):
1445
-
1449
.
10.
Avet-Loiseau
H
,
Lauwers-Cances
V
,
Corre
J
,
Moreau
P
,
Attal
M
,
Munshi
N
.
Minimal residual disease in multiple myeloma: final analysis of the IFM2009 Trial [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
435
.
11.
Davies
FE
.
Is molecular remission the goal of multiple myeloma therapy?
Hematology Am Soc Hematol Educ Program
.
2017
;
2017
:
205
-
211
.
12.
Salem
D
,
Stetler-Stevenson
M
,
Yuan
C
,
Landgren
O
.
Myeloma minimal residual disease testing in the United States: evidence of improved standardization
.
Am J Hematol
.
2016
;
91
(
12
):
E502
-
E503
.
13.
Flores-Montero
J
,
Sanoja-Flores
L
,
Paiva
B
, et al
.
Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma
.
Leukemia
.
2017
;
31
(
10
):
2094
-
2103
.
14.
Roshal
M
,
Flores-Montero
JA
,
Gao
Q
, et al
.
MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods
.
Blood Adv
.
2017
;
1
(
12
):
728
-
732
.
15.
Manasanch
EE
,
Salem
DA
,
Yuan
CM
, et al
.
Flow cytometric sensitivity and characteristics of plasma cells in patients with multiple myeloma or its precursor disease: influence of biopsy site and anticoagulation method
.
Leuk Lymphoma
.
2015
;
56
(
5
):
1416
-
1424
.
16.
Mateos
MV
,
Dimopoulos
MA
,
Cavo
M
, et al
;
ALCYONE Trial Investigators
.
Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma
.
N Engl J Med
.
2018
;
378
(
6
):
518
-
528
.
17.
FDA authorizes first next generation sequencing-based test to detect very low levels of remaining cancer cells in patients with acute lymphoblastic leukemia or multiple myeloma [news release]
.
2018
.
18.
Suzuki
K
,
Dimopoulos
MA
,
Takezako
N
, et al
.
Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: subgroup analyses of the phase 3 POLLUX study
.
Blood Cancer J
.
2018
;
8
(
4
):
41
.
19.
Spencer
A
,
Lentzsch
S
,
Weisel
K
, et al
.
Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR
.
Haematologica
.
2018
;
103
(
12
):
2079
-
2087
.
20.
Martinez-Lopez
J
,
Sanchez-Vega
B
,
Barrio
S
, et al
.
Analytical and clinical validation of a novel in-house deep-sequencing method for minimal residual disease monitoring in a phase II trial for multiple myeloma
.
Leukemia
.
2017
;
31
(
6
):
1446
-
1449
.
21.
Kunacheewa
C
,
Lin
P
,
Manasanch
EE
.
Minimal residual disease in multiple myeloma 2019
.
Adv Cell Gene Ther
.
2019
;
e71
.
22.
Ladetto
M
,
Brüggemann
M
,
Monitillo
L
, et al
.
Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders
.
Leukemia
.
2014
;
28
(
6
):
1299
-
1307
.
23.
Manasanch
EE
,
Landgren
O
.
Myeloma imaging: time to move on!
Leuk Lymphoma
.
2016
;
57
(
7
):
1499
-
1500
.
24.
Mangiacavalli
S
,
Pezzatti
S
,
Rossini
F
, et al
.
Implemented myeloma management with whole-body low-dose CT scan: a real life experience
.
Leuk Lymphoma
.
2016
;
57
(
7
):
1539
-
1545
.
25.
Gonsalves
WI
,
Rajkumar
SV
,
Gupta
V
, et al
.
Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma
.
Leukemia
.
2014
;
28
(
10
):
2060
-
2065
.
26.
Oberle
A
,
Brandt
A
,
Voigtlaender
M
, et al
.
Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA
.
Haematologica
.
2017
;
102
(
6
):
1105
-
1111
.
27.
Kis
O
,
Kaedbey
R
,
Chow
S
, et al
.
Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates
.
Nat Commun
.
2017
;
8
:
15086
.
28.
Gu
J
,
Liu
J
,
Chen
M
,
Huang
B
,
Li
J
.
Longitudinal flow cytometry identified “minimal residual disease” (MRD) evolution patterns for predicting the prognosis of patients with transplant-eligible multiple myeloma
.
Biol Blood Marrow Transplant
.
2018
;
24
(
12
):
2568
-
2574
.
29.
Ferrero
S
,
Ladetto
M
,
Drandi
D
, et al
.
Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival
.
Leukemia
.
2015
;
29
(
3
):
689
-
695
.
30.
Oliva
S
,
Gambella
M
,
Gilestro
M
, et al
.
Minimal residual disease after transplantation or lenalidomide-based consolidation in myeloma patients: a prospective analysis
.
Oncotarget
.
2017
;
8
(
4
):
5924
-
5935
.
You do not currently have access to this content.