Abstract

Genetic susceptibility to myelodysplastic syndrome (MDS) occurs in children with inherited bone marrow failure syndromes, including Fanconi anemia, Shwachman Diamond syndrome, and dyskeratosis congenita. Available evidence (although not perfect) supports annual surveillance of the blood count and bone marrow in affected persons. Optimal treatment of MDS in these persons is most commonly transplantation. Careful consideration must be given to host susceptibility to DNA damage when selecting a transplant strategy, because significant dose reductions and avoidance of radiation are necessary. Transplantation before evolution to acute myeloid leukemia (AML) is optimal, because outcomes of AML are extremely poor. Children and adults can present with germline mutations in GATA2 and RUNX1, both of which are associated with a 30% to 40% chance of evolution to MDS. GATA2 deficiency may be associated with a clinically important degree of immune suppression, which can cause severe infections that can complicate transplant strategies. GATA2 and RUNX1 deficiency is not associated with host susceptibility to DNA damage, and therefore, conventional treatment strategies for MDS and AML can be used. RUNX1 deficiency has a highly variable phenotype, and MDS can occur in childhood and later in adulthood within the same families, making annual surveillance with marrow examination burdensome; however, such strategies should be discussed with affected persons, allowing an informed choice.

References

References
1.
Kallen
ME
,
Dulau-Florea
A
,
Wang
W
,
Calvo
KR
.
Acquired and germline predisposition to bone marrow failure: diagnostic features and clinical implications
.
Semin Hematol
.
2019
;
56
(
1
):
69
-
82
.
2.
Dietz
AC
,
Mehta
PA
,
Vlachos
A
, et al
.
Current knowledge and priorities for future research in late effects after hematopoietic cell transplantation for inherited bone marrow failure syndromes: consensus statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
5
):
726
-
735
.
3.
Svahn
J
,
Bagnasco
F
,
Cappelli
E
, et al
.
Somatic, hematologic phenotype, long-term outcome, and effect of hematopoietic stem cell transplantation. An analysis of 97 Fanconi anemia patients from the Italian national database on behalf of the Marrow Failure Study Group of the AIEOP (Italian Association of Pediatric Hematology-Oncology)
.
Am J Hematol
.
2016
;
91
(
7
):
666
-
671
.
4.
Niraj
J
,
Färkkilä
A
,
D’Andrea
AD
.
The Fanconi anemia pathway in cancer
.
Annu Rev Cancer Biol
.
2019
;
3
(
1
):
457
-
478
.
5.
Mehta
PA
,
Davies
SM
,
Leemhuis
T
, et al
.
Radiation-free, alternative-donor HCT for Fanconi anemia patients: results from a prospective multi-institutional study
.
Blood
.
2017
;
129
(
16
):
2308
-
2315
.
6.
Cioc
AM
,
Wagner
JE
,
MacMillan
ML
,
DeFor
T
,
Hirsch
B
.
Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics
.
Am J Clin Pathol
.
2010
;
133
(
1
):
92
-
100
.
7.
Mehta
PA
,
Harris
RE
,
Davies
SM
, et al
.
Numerical chromosomal changes and risk of development of myelodysplastic syndrome–acute myeloid leukemia in patients with Fanconi anemia
.
Cancer Genet Cytogenet
.
2010
;
203
(
2
):
180
-
186
.
8.
Mitchell
R
,
Wagner
JE
,
Hirsch
B
,
DeFor
TE
,
Zierhut
H
,
MacMillan
ML
.
Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia
.
Br J Haematol
.
2014
;
164
(
3
):
384
-
395
.
9.
Mehta
PA
,
Tolar
J
.
Fanconi anemia
. In:
Adam
MP
,
Ardinger
HH
,
Pagopn
RA
,
Wallace
SE
,
Bean
LJH
,
Stephens
K
,
Amomiya
A
, eds.
GeneReviews
.
Seattle, WA
:
University of Washington
;
1993
.
10.
Mehta
PA
,
Ileri
T
,
Harris
RE
, et al
.
Chemotherapy for myeloid malignancy in children with Fanconi anemia
.
Pediatr Blood Cancer
.
2007
;
48
(
7
):
668
-
672
.
11.
Bierings
M
,
Bonfim
C
,
Peffault De Latour
R
, et al
;
EBMT SAA WP
.
Transplant results in adults with Fanconi anaemia
.
Br J Haematol
.
2018
;
180
(
1
):
100
-
109
.
12.
Myers
K
,
Davies
SM
,
Harris
RE
, et al
.
The clinical phenotype of children with Fanconi anemia caused by biallelic FANCD1/BRCA2 mutations
.
Pediatr Blood Cancer
.
2012
;
58
(
3
):
462
-
465
.
13.
Wagner
JE
,
Tolar
J
,
Levran
O
, et al
.
Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia
.
Blood
.
2004
;
103
(
8
):
3226
-
3229
.
14.
Khan
NE
,
Rosenberg
PS
,
Lehmann
HP
,
Alter
BP
.
Preemptive bone marrow transplantation for FANCD1/BRCA2
.
Biol Blood Marrow Transplant
.
2015
;
21
(
10
):
1796
-
1801
.
15.
Nelson
AS
,
Myers
KC
.
Diagnosis, treatment, and molecular pathology of Shwachman-Diamond syndrome
.
Hematol Oncol Clin North Am
.
2018
;
32
(
4
):
687
-
700
.
16.
Xia
J
,
Miller
CA
,
Baty
J
, et al
.
Somatic mutations and clonal hematopoiesis in congenital neutropenia
.
Blood
.
2018
;
131
(
4
):
408
-
416
.
17.
Myers
KC
,
Bolyard
AA
,
Otto
B
, et al
.
Variable clinical presentation of Shwachman-Diamond syndrome: update from the North American Shwachman-Diamond Syndrome Registry
.
J Pediatr
.
2014
;
164
(
4
):
866
-
870
.
18.
Delaporta
P
,
Sofocleous
C
,
Economou
M
,
Makis
A
,
Kostaridou
S
,
Kattamis
A
.
The Greek registry of Shwachman Diamond-syndrome: molecular and clinical data
.
Pediatr Blood Cancer
.
2017
;
64
(
11
):
e26630
.
19.
Valli
R
,
Minelli
A
,
Galbiati
M
, et al
.
Shwachman-Diamond syndrome with clonal interstitial deletion of the long arm of chromosome 20 in bone marrow: haematological features, prognosis and genomic instability
.
Br J Haematol
.
2019
;
184
(
6
):
974
-
981
.
20.
Lindsley
RC
,
Saber
W
,
Mar
BG
, et al
.
Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
.
N Engl J Med
.
2017
;
376
(
6
):
536
-
547
.
21.
Agarwal
S
.
Evaluation and management of hematopoietic failure in dyskeratosis congenita
.
Hematol Oncol Clin North Am
.
2018
;
32
(
4
):
669
-
685
.
22.
Boddu
PC
,
Kadia
TM
.
Molecular pathogenesis of acquired aplastic anemia
.
Eur J Haematol
.
2019
;
102
(
2
):
103
-
110
.
23.
Alter
BP
,
Giri
N
,
Savage
SA
, et al
.
Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study
.
Br J Haematol
.
2010
;
150
(
2
):
179
-
188
.
24.
Alter
BP
,
Giri
N
,
Savage
SA
,
Rosenberg
PS
.
Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up
.
Haematologica
.
2018
;
103
(
1
):
30
-
39
.
25.
Khincha
PP
,
Wentzensen
IM
,
Giri
N
,
Alter
BP
,
Savage
SA
.
Response to androgen therapy in patients with dyskeratosis congenita
.
Br J Haematol
.
2014
;
165
(
3
):
349
-
357
.
26.
Townsley
DM
,
Dumitriu
B
,
Liu
D
, et al
.
Danazol treatment for telomere diseases
.
N Engl J Med
.
2016
;
374
(
20
):
1922
-
1931
.
27.
Barbaro
P
,
Vedi
A
.
Survival after hematopoietic stem cell transplant in patients with dyskeratosis congenita: systematic review of the literature
.
Biol Blood Marrow Transplant
.
2016
;
22
(
7
):
1152
-
1158
.
28.
Nelson
AS
,
Marsh
RA
,
Myers
KC
, et al
.
A reduced-intensity conditioning regimen for patients with dyskeratosis congenita undergoing hematopoietic stem cell transplantation
.
Biol Blood Marrow Transplant
.
2016
;
22
(
5
):
884
-
888
.
29.
Ayas
M
,
Nassar
A
,
Hamidieh
AA
, et al
.
Reduced intensity conditioning is effective for hematopoietic SCT in dyskeratosis congenita-related BM failure
.
Bone Marrow Transplant
.
2013
;
48
(
9
):
1168
-
1172
.
30.
Dror
Y
,
Freedman
MH
,
Leaker
M
, et al
.
Low-intensity hematopoietic stem-cell transplantation across human leucocyte antigen barriers in dyskeratosis congenita
.
Bone Marrow Transplant
.
2003
;
31
(
10
):
847
-
850
.
31.
Güngör
T
,
Corbacioglu
S
,
Storb
R
,
Seger
RA
.
Nonmyeloablative allogeneic hematopoietic stem cell transplantation for treatment of Dyskeratosis congenita
.
Bone Marrow Transplant
.
2003
;
31
(
5
):
407
-
410
.
32.
Nishio
N
,
Takahashi
Y
,
Ohashi
H
, et al
.
Reduced-intensity conditioning for alternative donor hematopoietic stem cell transplantation in patients with dyskeratosis congenita
.
Pediatr Transplant
.
2011
;
15
(
2
):
161
-
166
.
33.
Vuong
LG
,
Hemmati
PG
,
Neuburger
S
, et al
.
Reduced-intensity conditioning using fludarabine and antithymocyte globulin alone allows stable engraftment in a patient with dyskeratosis congenita
.
Acta Haematol
.
2010
;
124
(
4
):
200
-
203
.
34.
Hahn
CN
,
Chong
CE
,
Carmichael
CL
, et al
.
Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia
.
Nat Genet
.
2011
;
43
(
10
):
1012
-
1017
.
35.
Kazenwadel
J
,
Secker
GA
,
Liu
YJ
, et al
.
Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature
.
Blood
.
2012
;
119
(
5
):
1283
-
1291
.
36.
Dickinson
RE
,
Griffin
H
,
Bigley
V
, et al
.
Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency
.
Blood
.
2011
;
118
(
10
):
2656
-
2658
.
37.
Hsu
AP
,
Sampaio
EP
,
Khan
J
, et al
.
Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome
.
Blood
.
2011
;
118
(
10
):
2653
-
2655
.
38.
Ostergaard
P
,
Simpson
MA
,
Connell
FC
, et al
.
Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome)
.
Nat Genet
.
2011
;
43
(
10
):
929
-
931
.
39.
West
RR
,
Hsu
AP
,
Holland
SM
,
Cuellar-Rodriguez
J
,
Hickstein
DD
.
Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation
.
Haematologica
.
2014
;
99
(
2
):
276
-
281
.
40.
Cuellar-Rodriguez
J
.
Nonmyeloablative versus myeloablative allogeneic hematopoietic stem cell transplant for GATA2 deficiency
.
Blood
.
2014
;
124
(
21
):
809
-
821
.
41.
Cuellar-Rodriguez
J
,
Gea-Banacloche
J
,
Freeman
AF
, et al
.
Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency
.
Blood
.
2011
;
118
(
13
):
3715
-
3720
.
42.
Song
WJ
,
Sullivan
MG
,
Legare
RD
, et al
.
Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia
.
Nat Genet
.
1999
;
23
(
2
):
166
-
175
.
43.
Schlegelberger
B
,
Heller
PG
.
RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM)
.
Semin Hematol
.
2017
;
54
(
2
):
75
-
80
.
44.
Kanagal-Shamanna
R
,
Loghavi
S
,
DiNardo
CD
, et al
.
Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation
.
Haematologica
.
2017
;
102
(
10
):
1661
-
1670
.
45.
Ripperger
T
,
Steinemann
D
,
Göhring
G
, et al
.
A novel pedigree with heterozygous germline RUNX1 mutation causing familial MDS-related AML: can these families serve as a multistep model for leukemic transformation?
Leukemia
.
2009
;
23
(
7
):
1364
-
1366
.
You do not currently have access to this content.