Abstract

Gene therapy offers the potential for a cure for patients with hemophilia by establishing continuous endogenous expression of factor VIII or factor IX (FIX) following transfer of a functional gene to replace the hemophilic patient’s own defective gene. The hemophilias are ideally suited for gene therapy because a small increment in blood factor levels (≥5% of normal) is associated with significant amelioration of bleeding phenotype in severely affected patients. In 2011, the St. Jude/UCL phase 1/2 trial was the first to provide clear evidence of a stable dose-dependent increase in FIX levels in patients with severe hemophilia B following a single administration of adeno-associated viral (AAV) vectors. Transgenic FIX expression has remained stable at ∼5% of normal in the high-dose cohort over a 7-year follow-up period, resulting in a substantial reduction in spontaneous bleeding and FIX protein usage without toxicity. This study has been followed by unparalleled advances in gene therapy for hemophilia A and B, leading to clotting factor activity approaching normal or near-normal levels associated with a “zero bleed rates” in previously severely affected patients following a single administration of AAV vectors. Thus, AAV gene therapies are likely to alter the treatment paradigm for hemophilia A and B. This review explores recent progress and the remaining limitations that need to be overcome for wider availability of this novel treatment of inherited bleeding disorders.

References

References
1.
Nathwani
AC
,
Tuddenham
EG
.
Epidemiology of coagulation disorders
.
Baillieres Clin Haematol
.
1992
;
5
(
2
):
383
-
439
.
2.
Loomans
JI
,
Fijnvandraat
K
.
Mortality caused by intracranial bleeding in non-severe hemophilia A patients: reply
.
J Thromb Haemost
.
2017
;
15
(
8
):
1710
-
1711
.
3.
Manco-Johnson
MJ
,
Abshire
TC
,
Shapiro
AD
, et al
.
Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia
.
N Engl J Med
.
2007
;
357
(
6
):
535
-
544
.
4.
Darby
SC
,
Kan
SW
,
Spooner
RJ
, et al
.
Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV
.
Blood
.
2007
;
110
(
3
):
815
-
825
.
5.
Lambert
T
,
Benson
G
,
Dolan
G
, et al
.
Practical aspects of extended half-life products for the treatment of haemophilia
.
Ther Adv Hematol
.
2018
;
9
(
9
):
295
-
308
.
6.
Konkle
BA
,
Shapiro
A
,
Quon
D
, et al
.
BIVV001: The first investigational factor VIII therapy to break through the VWF ceiling in hemophilia A, with potential for extended protection for one week or longer
.
Blood
.
2018
;
132
(
suppl 1
):
636
.
7.
Shima
M
,
Hanabusa
H
,
Taki
M
, et al
.
Factor VIII-mimetic function of humanized bispecific antibody in hemophilia A
.
N Engl J Med
.
2016
;
374
(
21
):
2044
-
2053
.
8.
Oldenburg
J
,
Mahlangu
JN
,
Kim
B
, et al
.
Emicizumab prophylaxis in hemophilia A with inhibitors
.
N Engl J Med
.
2017
;
377
(
9
):
809
-
818
.
9.
Sehgal
A
,
Barros
S
,
Ivanciu
L
, et al
.
An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia
.
Nat Med
.
2015
;
21
(
5
):
492
-
497
.
10.
Eichler
H
,
Angchaisuksiri
P
,
Kavakli
K
, et al
.
A randomized trial of safety, pharmacokinetics and pharmacodynamics of concizumab in people with hemophilia A
.
J Thromb Haemost
.
2018
;
16
(
11
):
2184
-
2195
.
11.
Ljung
RC
.
Prophylactic infusion regimens in the management of hemophilia
.
Thromb Haemost
.
1999
;
82
(
2
):
525
-
530
.
12.
Roth
DA
,
Tawa
NE
Jr
,
O’Brien
JM
,
Treco
DA
,
Selden
RF
;
Factor VIII Transkaryotic Therapy Study Group
.
Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A
.
N Engl J Med
.
2001
;
344
(
23
):
1735
-
1742
.
13.
Roth
DA
,
Tawa
NE
Jr
,
Proper
J
, et al
.
Implantation of non-viral ex vivo genetically modified autologous dermal fibroblasts that express B-domain deleted human factor VIII in 12 severe hemophilia A study subjects
.
Blood
.
2002
;
100
:
116a
.
14.
Qiu
X
,
Lu
D
,
Zhou
J
, et al
.
Implantation of autologous skin fibroblast genetically modified to secrete clotting factor IX partially corrects the hemorrhagic tendencies in two hemophilia B patients
.
Chin Med J (Engl)
.
1996
;
109
(
11
):
832
-
839
.
15.
Mannucci
PM
.
Ham-Wasserman Lecture: Hemophilia and related bleeding disorders: a story of dismay and success
.
Hematology.
2002
;
2002
(
1
):
1
-
9
.
16.
Manno
CS
,
Chew
AJ
,
Hutchison
S
, et al
.
AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B
.
Blood
.
2003
;
101
(
8
):
2963
-
2972
.
17.
High
KA
,
Manno
CS
,
Sabatino
DE
, et al
.
Immune responses to AAV and to factor IX in a phase I study of AAV-mediated liver-directed gene transfer for hemophilia B
.
Blood
.
2003
;
102
(
11
):
154a
-
155a
.
18.
Nathwani
AC
,
Davidoff
A
,
Hanawa
H
,
Zhou
JF
,
Vanin
EF
,
Nienhuis
AW
.
Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA
.
Blood
.
2001
;
97
(
5
):
1258
-
1265
.
19.
Nathwani
AC
,
Gray
JT
,
Ng
CY
, et al
.
Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver
.
Blood
.
2006
;
107
(
7
):
2653
-
2661
.
20.
Nathwani
AC
,
Gray
JT
,
McIntosh
J
, et al
.
Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates
.
Blood
.
2007
;
109
(
4
):
1414
-
1421
.
21.
Fagone
P
,
Wright
JF
,
Nathwani
AC
,
Nienhuis
AW
,
Davidoff
AM
,
Gray
JT
.
Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods
.
Hum Gene Ther Methods
.
2012
;
23
(
1
):
1
-
7
.
22.
Thomas
CE
,
Storm
TA
,
Huang
Z
,
Kay
MA
.
Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors
.
J Virol
.
2004
;
78
(
6
):
3110
-
3122
.
23.
Gao
GP
,
Alvira
MR
,
Wang
L
,
Calcedo
R
,
Johnston
J
,
Wilson
JM
.
Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy
.
Proc Natl Acad Sci USA
.
2002
;
99
(
18
):
11854
-
11859
.
24.
Nathwani
AC
,
Reiss
U
,
Tuddenham
E
, et al
.
Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing “empty viral particles” on safety and efficacy of gene transfer
.
Blood
.
2018
;
132
(
suppl 1
):
491
.
25.
Miesbach
W
,
Meijer
K
,
Coppens
M
, et al
.
Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B
.
Blood
.
2018
;
131
(
9
):
1022
-
1031
.
26.
Doshi
BS
,
Arruda
VR
.
Gene therapy for hemophilia: what does the future hold?
Ther Adv Hematol
.
2018
;
9
(
9
):
273
-
293
.
27.
Finn
JD
,
Nichols
TC
,
Svoronos
N
, et al
.
The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy
.
Blood
.
2012
;
120
(
23
):
4521
-
4523
.
28.
Vandamme
C
,
Adjali
O
,
Mingozzi
F
.
Unraveling the complex story of immune responses to AAV vectors trial after trial
.
Hum Gene Ther
.
2017
;
28
(
11
):
1061
-
1074
.
29.
George
LA
,
Sullivan
SK
,
Giermasz
A
, et al
.
Hemophilia B gene therapy with a high-specific-activity factor IX variant
.
N Engl J Med
.
2017
;
377
(
23
):
2215
-
2227
.
30.
Von Drygalski
A
,
Giermasz
A
,
Castaman
G
, et al
.
Phase 2b trial of AMT-061 (AAV5-Padua hFIX): translation into humans of an enhanced gene transfer vector for adults with severe or moderate-severe hemophilia B
.
Haemophilia
.
2019
;
25
:
30
.
31.
Chowdary
P
,
Shapiro
S
,
Davidoff
AM
, et al
.
A single intravenous infusion of FLT180a results in factor IX activity levels of more than 40% and has the potential to provide a functional cure for patients with haemophilia B
.
Blood
.
2018
;
132
(
suppl 1
):
631
.
32.
McIntosh
J
,
Lenting
PJ
,
Rosales
C
, et al
.
Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant
.
Blood
.
2013
;
121
(
17
):
3335
-
3344
.
33.
Rangarajan
S
,
Walsh
L
,
Lester
W
, et al
.
AAV5-factor VIII gene transfer in severe hemophilia A
.
N Engl J Med
.
2017
;
377
(
26
):
2519
-
2530
.
34.
Nathwani
AC
,
Tuddenham
E
,
Chowdary
P
, et al
.
GO-8: preliminary results of a phase I/II dose escalation trial of gene therapy for haemophilia a using a novel human factor VIII variant
.
Blood
.
2018
;
132
(
suppl 1
):
489
.
35.
George
LA
,
Ragni
M
,
Sullivan
SK
, et al
.
SPK-8011: Preliminary results from a phase 1/2 trial of investigational gene therapy for hemophilia A
.
Haemophilia
.
2018
;
24
:
30
-
31
.
36.
Konkle
BAKS
,
Visweshwar
N
,
Harrington
T
, et al
.
Initial results of the Alta study, a phase 1/2, open label, adaptive, dose-ranging study to assess the safety and tolerability of SB-525 gene therapy in adult subjects with severe hemophilia A
. In:
Proceedings from ISTH 2019: Practice in Thrombosis and Hemostasis
,
2019
,
Melbourne, Australia
.
37.
Simioni
P
,
Tormene
D
,
Tognin
G
, et al
.
X-linked thrombophilia with a mutant factor IX (factor IX Padua)
.
N Engl J Med
.
2009
;
361
(
17
):
1671
-
1675
.
38.
Nowrouzi
A
,
Penaud-Budloo
M
,
Kaeppel
C
, et al
.
Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver
.
Mol Ther
.
2012
;
20
(
6
):
1177
-
1186
.
39.
Li
H
,
Malani
N
,
Hamilton
SR
, et al
.
Assessing the potential for AAV vector genotoxicity in a murine model
.
Blood
.
2011
;
117
(
12
):
3311
-
3319
.
40.
Nault
JC
,
Datta
S
,
Imbeaud
S
, et al
.
Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas
.
Nat Genet
.
2015
;
47
(
10
):
1187
-
1193
.
41.
Donsante
A
,
Miller
DG
,
Li
Y
, et al
.
AAV vector integration sites in mouse hepatocellular carcinoma
.
Science
.
2007
;
317
(
5837
):
477
.
42.
Kay
MA
.
AAV vectors and tumorigenicity
.
Nat Biotechnol
.
2007
;
25
(
10
):
1111
-
1113
.
43.
Grieger
JC
,
Samulski
RJ
.
Adeno-associated virus vectorology, manufacturing, and clinical applications
.
Methods Enzymol
.
2012
;
507
:
229
-
254
.
44.
Cecchini
S
,
Negrete
A
,
Kotin
RM
.
Toward exascale production of recombinant adeno-associated virus for gene transfer applications
.
Gene Ther
.
2008
;
15
(
11
):
823
-
830
.
45.
Mingozzi
F
,
Anguela
XM
,
Pavani
G
, et al
.
Overcoming preexisting humoral immunity to AAV using capsid decoys
.
Sci Transl Med
.
2013
;
5
(
194
):
194ra92
.
46.
Davidoff
AM
,
Nathwani
AC
.
Genetic targeting of the albumin locus to treat hemophilia
.
N Engl J Med
.
2016
;
374
(
13
):
1288
-
1290
.
47.
Barzel
A
,
Paulk
NK
,
Shi
Y
, et al
.
Promoterless gene targeting without nucleases ameliorates haemophilia B in mice
.
Nature
.
2015
;
517
(
7534
):
360
-
364
.
48.
Sharma
R
,
Anguela
XM
,
Doyon
Y
, et al
.
In vivo genome editing of the albumin locus as a platform for protein replacement therapy
.
Blood
.
2015
;
126
(
15
):
1777
-
1784
.
49.
Milani
M
,
Annoni
A
,
Moalli
F
, et al
.
Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates
.
Sci Transl Med
.
2019
;
11
(
493
):
eaav7325
.
You do not currently have access to this content.