Retinoic acid (RA)-induced maturation mediated by the retinoic acid receptor alpha (RAR alpha) has been implicated in myeloid development. We have used differential hybridization analysis of a cDNA library constructed from the murine RA-inducible MPRO promyelocyte cell line to identify immediate-early genes induced by RA during granulocytic differentiation. E3, one of nine sequences identified, was upregulated in an immediate-early manner, with transcript levels peaking after 60 minutes exposure to RA. E3 transcripts were RA-inducible in HL60 cells, but not in an RA-resistant subclone, HL60R, that harbors a mutated RAR alpha gene. However, when HL60R cells were transduced with a functional copy of the RAR alpha gene, RA induced a 10-fold increase in E3 mRNA levels. E3 transcripts are present in the myeloid, B-lymphoid, and erythroid lineages, absent in nonhematopoietic cells, and encode a highly hydrophobic, potentially phosphorylated polypeptide of unknown function with significant homology to a putative protein expressed in myeloid cells. The murine E3 promoter harbors a single bipartite retinoic acid response element which in transient transfection assays conferred RA sensitivity. These results indicate that E3 is a hematopoietic-specific gene that is an immediate target for the activated RAR alpha during myelopoiesis.

This content is only available as a PDF.