The effects of endothelin-1 (ET-1) on P-selectin-mediated leukocyte endothelial interaction were examined in vitro. Adherence of autologous polymorphonuclear leukocytes (PMNs) to the endothelium was markedly enhanced by endothelial stimulation with either (2 U/mL) thrombin, (1 mumol/L) histamine, or (100 nmol/L) phorbol myristate acetate (PMA). In contrast, ET-1 alone (10 and 100 nmol/L) only slightly increased the number of adhering PMNs. The increased PMN adherence to thrombin- or histamine-stimulated endothelium, which was blocked by an anti-P-selectin monoclonal antibody, was also significantly attenuated by preincubation of coronary segments with (100 nmol/L) ET-1. We further investigated the mechanism of this anti-adherence action of ET-1 on thrombin-stimulated endothelial adhesiveness. Preincubation of coronary segments with a selective ETA receptor antagonist, BQ485 (1 mumol/L), had no effect on ET-1 inhibition of thrombin-induced PMN adherence. In contrast, preincubation with a selective ETB receptor antagonist, BQ788 (1 mumol/L) significantly reversed ET-1 inhibition of thrombin-induced PMN adherence, whereas the selective ETB receptor agonist BQ-3020 mimicked the inhibitory action of ET-1 on thrombin-induced PMN adherence. Furthermore, (100 mumol/L) N omega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, significantly attenuated ET-1 inhibition of thrombin-stimulated PMN adherence. These results suggest that ET-1 may inhibit P-selectin-mediated leukocyte-endothelial interaction via ETB receptor stimulation and subsequent endothelial NO formation. This autocrine effect of ET-1 may be involved in pathophysiologic states such as early atherogenesis by preventing leukocyte-endothelial interaction in constricted blood vessels.

This content is only available as a PDF.