In response to extracellular stimulation, one of the earliest events in human neutrophils is protein phosphorylation, which mediates signal transduction and leads to the regulation of cellular functions. Mitogen- activated protein (MAP) kinases are rapidly activated by a variety of mitogens, cytokines, and stresses. The activated MAP kinases in turn regulate their substrate molecules by phosphorylation. MAP kinase- activated protein (MAPKAP) kinase 2, a Ser/Thr kinase, has been shown to be phosphorylated by p38 MAP kinase both in vivo and in vitro. Phosphorylation of the Thr-334 site of MAPKAP kinase 2 results in a conformational change with subsequent activation of the enzyme. To better define the role of MAPKAP kinase 2 in the activation of human neutrophils, its enzymatic activity was measured after stimulation by either a phorbol ester (phorbol myristate acetate [PMA]), a potent protein kinase C activator, or the tripeptide fMLP, which is a chemotactic factor. The in vitro kinase assays indicate that both PMA and fMLP stimulated a transient increase in the enzymatic activity of cellular MAPKAP kinase 2. The induced kinase activation was concentration-dependent and reached a maximum at 5 minutes for PMA and 1 minute for fMLP. To identify potential substrate molecules for MAPKAP kinase 2, a highly active kinase mutant was generated by mutating the MAP kinase phosphorylation site in the C-terminal region. The replacement of threonine 334 with alanine resulted in a marked augmentation of catalytic activity. Analysis of in vitro protein phosphorylation in the presence of the active kinase indicates that a 60-kD cytosolic protein (p60) was markedly phosphorylated and served as the major substrate for MAPKAP kinase 2 in human neutrophils. Based on the MAPKAP kinase 2 phosphorylation site of Hsp27, a competitive inhibitory peptide was synthesized. This competitive inhibitory peptide specifically inhibited MAPKAP kinase 2 enzymatic activity, as well as the in vitro and in vivo kinase-induced p60 phosphorylation. To assess the contribution of MAPKAP kinase 2 in neutrophil function, the oxidative burst response after manipulation of endogenous kinase activity was measured. Intracellular delivery of the competitive inhibitory peptide into human neutrophils reduced both PMA- and fMLP- stimulated superoxide anion production. Thus, the results strongly suggest that MAPKAP kinase 2 is involved in the activation of human neutrophils.

This content is only available as a PDF.