Glycoprotein (GP)IIb/IIIa, an integrin complex found on the surface of platelets, is a receptor for fibrinogen and other ligands, and is involved in platelet aggregation. Because GPIIb is specifically expressed in megakaryocytes, we have studied the 52-flanking region of the rat (r) GPIIb gene as a model of a megakaryocyte-specific gene. The studies presented here used a rat marrow expression system, which allows the study of primary cells undergoing terminal differentiation into megakaryocytes. The determination of megakaryocyte-specific expression of DNA constructs was possible by immunomagnetically separating megakaryocytes from total bone marrow cells. Transient expression constructs, containing varying lengths of the 52-flanking region from -39 to -912 bp, localized a regulatory element between -460 and -439 bp upstream of the transcriptional start site. This region contains a GATA consensus binding element between -457 and -454 (GATA454). Further constructs demonstrated that this GATA binding element was indeed essential for expression. A 25-bp substitution, covering the region -450 to -426 immediately downstream of the GATA454, demonstrated that this region was essential for full expression, which suggests that this region may interact with the GATA454 site in promoting high-level lineage-specific expression. To define regulatory elements between the GATA454 and the transcriptional start site further, we tested additional constructs derived from the original -912 construct; each of which contained the GATA454 but had different 50-bp deletions from -450 to the start site. Virtually all of these constructs continued to show high-level tissue-specific expression. The deleted -150 to -101 construct had twice the level of expression of the full-length wild-type construct; therefore, this region may contain a negative regulatory element. Comparison of our data with expression studies performed with the 52-region of the human GPIIb gene using HEL cells, a cell line with some megakaryocytic properties, demonstrates significant differences, which may reflect our use of primary rate bone marrow cells. In particular, our study points to the importance of the GATA454 for high levels of GPIIb expression in developing megakaryocytes.

This content is only available as a PDF.