A novel thrombin inhibitor based on single-stranded (ss) deoxynucleotides with the sequence GGTTGGTGTGGTTGG (thrombin aptamer) has been recently discovered. In this study, we tested its efficacy in inhibiting clot-bound thrombin activity and platelet thrombus formation in an ex vivo whole artery angioplasty model. The thrombin aptamer showed a specific dose-dependent inhibition of thrombin-induced platelet aggregation (0.5 U/mL) in human platelet-rich plasma, with an IC50 of approximately 70 to 80 nmol/L. In an in vitro clot-bound thrombin assay system, heparin, used at clinically relevant concentrations of 0.2 U/mL and 0.4 U/mL, was ineffective in inhibiting clot-bound thrombin (6.5% and 34.9% inhibition at 0.2 U/mL and 0.4 U/mL, respectively). In contrast, the thrombin aptamer at an equivalent anticoagulant concentration inhibited clot-bound thrombin (79.7% inhibition). In an ex vivo whole artery angioplasty model, the thrombin aptamer markedly suppressed the generation of fibrinopeptide A (FPA), whereas heparin at 2 U/mL was ineffective. Compared with a scrambled ssDNA control, the thrombin aptamer reduced platelet deposition by 34.5% +/- 5% (mean +/- SEM, n = 4, P = .09) at low shear rates (approximately 200 s-1) and 61.3% +/- 11% (mean +/- SEM, n = 4, P = .05) at high shear rates (approximately 850 s-1). Thrombin aptamers based on ssDNA molecules represent a new class of thrombin inhibitors with potent anticoagulant and antithrombotic properties.

This content is only available as a PDF.