Abstract

Factor Xa is a central procoagulant enzyme, linking the intrinsic and extrinsic activation mechanisms to the final common pathway of coagulation. To assess its contribution to pathologic thrombosis, studies were performed in a canine coronary thrombosis model. Thrombus formation was initiated by the application of electric current via a needle electrode placed in the lumen of the left circumflex coronary artery. When 50% occlusion of the vessel developed, the current was stopped and animals received an intravenous bolus of either saline, bovine glutamyl-glycinyl-arginyl-factor Xa (Xai), a competitive inhibitor of factor Xa assembly into the prothrombinase complex, Factor X, or heparin. Animals infused with saline or factor X (300 micrograms/kg) developed total occlusion of the vessel due to a fibrin/platelet thrombus in 70 +/- 11 minutes (36 of 36 animals) and 74 +/- 13 minutes (8 of 8 animals), respectively. In contrast, infusion of Xai prevented thrombus formation completely at a dose of 300 micrograms/kg (8 of 8 animals). As the dose of Xai was decreased, its antithrombotic effect was diminished, with a patency rate of only 2 of 6 animals at a dose of 90 micrograms/kg. Xai at 300 micrograms/kg prevented the accumulation of 125I-fibrinogen/fibrin at the site of the coronary thrombus by approximately 63% and decreased deposition of 111In-labeled platelets by approximately 57%. Hemostatic parameters of animals infused with Xai demonstrated prolongation of the PT and dose- dependent increased extravascular bleeding tendency. These data indicate that factor Xa has a comparably important role in thrombus formation and extravascular hemostasis, and contrast with previous results in this same animal model in which IXai selectively prevented clotting in the coronary vasculature.

This content is only available as a PDF.