The regulation of erythropoietin (Epo) production was investigated by competitive polymerase chain reaction, a highly sensitive and accurate means of measuring Epo mRNA levels. Co-amplification of the test sample with added mutant Epo cDNA template corrects for variability in the efficiency of amplification. Epo mRNA levels were determined in tissues of normal rats and in animals with varying degrees of anemia. Reduction of the hematocrit level from 0.40 to 0.15–0.20 resulted in a 300-fold increase in kidney Epo mRNA, which comprised 80% of the total Epo mRNA versus 20% from the liver. In contrast, very low levels detected in lung and spleen were not significantly increased by anemia. The human hepatoma cell line, Hep3B, secretes high levels of Epo in response to hypoxia. This regulation is, to a large extent, transcriptional. When Hep3B cells were incubated in the presence of decreasing O2 tension from 160 to 7 mm Hg, there was a monotonic increase in Epo mRNA to 50 to 100 times the normoxic level. Hyperoxia did not suppress basal expression. When cells were incubated at a PO2 of 7 mm Hg, induction of Epo mRNA was first noted at 30 minutes and was maximal at 5 to 6 hours. After Epo mRNA was boosted by a 4-hour hypoxic incubation, cells were then exposed to normoxia, which shut off further transcription of the Epo gene. The decay of Epo mRNA levels closely followed first order kinetics with a half-life of 2 hours, an effective measurement of message stability.

This content is only available as a PDF.