Abstract

We have examined the effects of recombinant human interleukin-11 (rhIL- 11) on the recovery of peripheral blood cell counts and proliferation of progenitors and hematopoietic stem cells (day 12 colony-forming units-spleen-CFU-S12) in vivo using a mouse bone marrow (BM) and spleen cell transplantation model. Recovery of leukocytes was accelerated in animals receiving daily administration of rhIL-11 (100 micrograms/kg/d) and reached normal levels by day 14 posttransplantation. This increased total leukocyte count reflected mainly an increase in neutrophils. Neutropenia (absolute neutrophil count [ANC] < 1,500) was present in control transplant mice for 14 to 15 days, while in the rhIL-11-treated group, neutrophils recovered to normal by days 8 to 10 and continued to increase until day 19. Animals treated with rhIL-11 had only 1 day with ANC demonstrated < 500. Correspondingly, rhIL-11 treatment increased granulocyte-macrophage progenitors (CFU-GM) derived from both spleen and BM cells. Higher doses of IL-11 increased CFU-GM nearly threefold and CFU-Mix fourfold to fivefold, while increasing burst-forming units- erythroid to a lesser degree. BM and spleen cellularity were both increased in IL-11-treated mice, but no increase in CFU-S12 was noted. In addition, in vivo daily administration of IL-11 increased peripheral platelet counts by threefold over control transplant mice at day 10 posttransplantation during the post-irradiation platelet nadir. Further treatment led to platelet counts higher than normal 18 days posttransplantation when control animals had just attained normal platelet counts. IL-11 can accelerate the recovery of the peripheral blood leukocytes, mainly neutrophils, and platelets in transplant mice, effects that may be clinically useful in future applications for BM transplantation and chemotherapy-related cytopenias.

This content is only available as a PDF.