Deoxygenation of sickle cells is known to increase cation permeabilities (Na+, K+, and Ca2+). The possible mechanisms involved in the increased uptake of Ca2+ were investigated: activation of Ca2+ channels, involvement of the anion channel, and the formation of endocytic vacuoles. The Ca2+ channel blocker nifedipine reduced the deoxy-stimulated Ca2+ uptake by about 30% to 40%. The anion channel inhibitor DIDS (4,4′ diisothiocyanate stilbene 2,2′ disulfonate) inhibited the deoxy-stimulated Ca2+ uptake by approximately 50%. Maximal possible endocytic uptake, measured by using an impermeant marker ([3H] inuline), accounted for 6% to 9% of the total Ca2+ uptake. These data indicate that the deoxygenation-induced increase in Ca2+ permeability could result from both the activation of a Ca2+ channel and of a transport system for cations involving interactions between polymerized hemoglobin S, band 3 and other membrane components. Endocytosis appears to play only a minor role in the Ca2+ uptake of deoxygenated sickle cells.

This content is only available as a PDF.

Sign in via your Institution