Several previous studies suggested that murine macrophage colony- stimulating factor (CSF-1) might have impaired access to hematopoietic cells in the marrow. The apparent lack of hematopoietic responses to exogenous CSF and the finding of available or unoccupied CSF receptors despite saturating CSF levels in the serum led to studies of a potential blood-bone marrow barrier for this factor. Groups of mice were injected with pure unlabeled CSF-1 by either intravenous (IV) or intraperitoneal (IP) routes. Marrow and spleen cells were obtained at intervals after injection, held at 0 degree C, and assessed for changes in binding of 125I-CSF. Saturation of all available CSF receptors is achieved in vitro with 100 to 150 U CSF/mL. Despite achieving serum levels of 5,000 to 7,000 U/mL after IV injection of 25,000 units of CSF, less than 50% of the marrow receptors and less than 85% of the splenic receptors were saturated or downregulated. The decline in receptor availability was transient, with return of receptor sites in two to four hours. Increasing the IV dose to 125,000 units increased serum CSF values to approximately 20,000 U/mL and led to a virtual disappearance of available receptors for two to three hours. When administered IP, only approximately 40% of marrow and 80% of splenic receptors were affected for two hours. It was necessary to increase the dose of CSF to 250,000 units IP to saturate or downregulate receptors for three to four hours after injection. These observations indicate a marked blood-bone marrow barrier and lesser blood-spleen barrier for the transfer of serum CSF to responsive hematopoietic cells in vivo.

This content is only available as a PDF.