Abstract

To determine whether the vasoocclusive severity of homozygous sickle cell (SS) disease is influenced by cellular dehydration, we correlated the incidence of painful crisis with steady-state measurements of red cell hydration. Sixteen children with SS disease were followed for 3.3 to 8 years (mean, 6.8 years), and a single crisis rate was calculated for each patient. At the time of well visits, cellular hydration was assessed by measuring cell deformability, the percentage of red cells with a density greater than or equal to 1.1056 g/mL, and the percentage of irreversibly sickled cells (ISC). The incidence of painful crisis showed a strong positive correlation with Omax, a deformability measurement reflecting cellular hydration (r = .84, P less than .002), and with hemoglobin concentration (r = .59, P = .04). That is, higher crisis rates were observed in patients with less dehydrated, more deformable red cells and also in patients with higher hemoglobin concentrations. Furthermore, cell deformability and hemoglobin concentration were independent predictors of the incidence of painful crisis, which is consistent with separate effects of these two red cells parameters on vasoocclusive severity.

This content is only available as a PDF.