Abstract

Glycosaminoglycans, mainly chondroitin 4-sulfate, are located in the primary granules of human myeloid cells. These polyanionic carbohydrates are believed to play an important role in leukocyte maturation and function. To study the effect of altered chondroitin sulfate metabolism on human promyelocytic leukemia cells, we have treated HL-60 cells with 4-methylumbelliferyl-beta-D-xyloside. beta-D- Xylosides initiate the synthesis of free chondroitin sulfate chains. Cytochemical studies of treated cells demonstrated a marked increase in cytoplasmic granules stained with cationic dyes. This was confirmed by radiolabeled precursor incorporation studies that demonstrated a 344% increase in 35S-sulfate uptake into glycosaminoglycans associated with the cells and a 39% increase in incorporation into glycosaminoglycans released into the media. Chromatographic analyses of these glycosaminoglycans from treated cells demonstrated that the newly formed chondroitin sulfate chains were not attached to protein core and were of shorter length, but of greater charge density than chondroitin sulfate produced by control cells. Thus, beta-D-xyloside appears to alter the protein linkage, chain length, and sulfation of chondroitin sulfate produced by HL-60 cells, and these changes are morphologically evident. These biochemically altered cells may provide important information concerning the role of these macromolecules in myeloid development.

This content is only available as a PDF.