The activation of factor VIII:C by thrombin appears to be an important prerequisite for the function of factor VIII:C as a cofactor in factor X activation in coagulation. The possible modulation of factor VIII:C activation by potential cofactors such as calcium ions, phospholipid, and platelets was studied systematically. Factor VIII:C activation could not be studied in the complete absence of Ca2+, since factor VIII:C activity decayed rapidly in calcium-free buffers, EDTA, or ethylene glycol tetra-acetic acid (EGTA), with only partial or no recovery of activity after readdition of Ca2+, Mn2+, or Mg2+. Added calcium chloride at 1.25, 2.5, 4, 10, 50, and 200 mmol/L produced progressive inhibition of factor VIII:C activation, with complete inhibition achieved by 50 mmol/L. Crude phospholipid preparations gave varying results, while purified phospholipids either had no effect or inhibited activation. This paper reports the new finding that fresh washed human platelets markedly potentiated factor VIII:C activation by a low concentration of thrombin (0.02 U/mL), even with prostaglandin E1 (PGE1) or dibutyryl cyclic AMP (cAMP) added to the washed platelets. However, the activity of platelets in factor VIII:C activation was inhibited by inclusion of PGE1 or dibutyryl cAMP during platelet washing, and ionophore A23187 increased this platelet activity; these data suggest that platelet stimulation is involved in the development of this activity. When platelets were maximally stimulated by thrombin (0.5 U/mL), the external calcium concentration increased 55 to 160 mumol/L, as measured with murexide, supporting the possible modulation of factor VIII:C activation by a transient increase in Ca2+ at the platelet surface.

This content is only available as a PDF.