In order to test if trans-acting regulatory factors specific for globin genes of the adult and embryonic stages of development exist in erythroid cells, transcriptionally active embryonic and adult globin genes on the same chromosome were transferred by cell fusion from the human leukemia cell K562 into phenotypically adult mouse erythroleukemia cells. Restriction-fragment-length polymorphisms of the K562 zeta (embryonic) globin genes were used to establish that all three copies of human chromosome 16 present in the K562 cell showed the same pattern of human globin gene expression after transfer to the mouse erythroleukemia cell. Adult (alpha) but not embryonic (zeta) human globin mRNA was detected in all nine of the independently derived mouse erythroleukemia hybrid cells, each of which contained human chromosome 16. Restriction endonuclease studies of the K562 alpha- and zeta-globin genes after transfer into the mouse erythroleukemia cell showed no evidence of rearrangements or deletions that could explain this loss of zeta-globin gene expression. These data suggest that regulation of globin gene expression in these erythroleukemia cells involves trans-acting regulatory factors specific for the adult and embryonic stages of development.

This content is only available as a PDF.