We describe four patients with impaired platelet aggregation and 14C- serotonin secretion during stimulation with adenosine diphosphate (ADP), epinephrine, collagen, and platelet-activating factor. The response to arachidonic acid was normal in all patients with regard to aggregation and in three of the four with regard to 14C-serotonin secretion. The total platelet adenosine triphosphate (ATP) and ADP content and the ATP to ADP ratio was normal in all patients, thereby excluding storage pool deficiency as the cause of the secretion defect. Studies with 3H-arachidonic acid-labeled platelets revealed that the thrombin-induced liberation of arachidonic acid from membrane-bound phospholipids was impaired in these patients. Further, platelet thromboxane B2 production, measured using a radioimmunoassay, was diminished during stimulation with ADP and thrombin, but was normal with arachidonic acid, indicating that the oxygenation of arachidonic acid was normal and that the diminished thromboxane production was due to a defect in the liberation of arachidonic acid. Release of arachidonic acid is mediated by phospholipases that are Ca++ dependent. To examine whether these patients may have a defect in making intracellular Ca++ available, another Ca++-dependent process, myosin light chain phosphorylation, was studied during thrombin stimulation. Platelets from three of the patients were found to behave the same as normal ones, suggesting that the deficiency in phospholipase activity may not be due to impaired Ca++ mobilization. Our studies demonstrate a novel group of patients with platelet secretion defects associated with impaired liberation of arachidonic acid from phospholipids. These patients exemplify a congenital defect, other than deficiencies of cyclooxygenase and thromboxane synthetase, by which thromboxane production may be impaired in platelets.

This content is only available as a PDF.