Abstract

In spontaneous fibrinolysis of an alpha 2-plasmin inhibitor-deficient plasma clot or tissue-type plasminogen activator-induced fibrinolysis in a purified system without alpha 2-plasmin inhibitor, the lysis was faster when factor XIII-mediated crosslinking of fibrin to fibrin did not occur. During the initial period, the binding of plasminogen to fibrin steadily increased with incubation time. The initial level and subsequent increase of the binding, which may be critical for the subsequent development of fibrinolysis, were more remarkable when fibrin was not crosslinked. The amount of glu- or lys-plasminogen bound to noncrosslinked fibrin was around 4 or 1.5 times larger than the amount of the respective plasminogen bound to crosslinked fibrin. Plasmin was also found to be bound to noncrosslinked fibrin twice as much as the amount bound to crosslinked fibrin. Structural changes induced by crosslinking of fibrin alpha-chain may reduce either the affinity or the number of available complementary sites to lysine binding sites of plasmin(ogen), thereby decreasing the binding of plasmin(ogen) to fibrin. These results suggest that an increased affinity of noncrosslinked fibrin for plasmin(ogen) is contributory to the accelerated fibrinolysis observed in factor XIII deficiency, in addition to an absence of crosslinking of alpha 2-plasmin inhibitor to fibrin.

This content is only available as a PDF.