Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12- myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5–10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.

This content is only available as a PDF.
Sign in via your Institution