Multiple Myeloma (MM) is a malignancy of plasma cells that affects over 30,000 Americans every year. Despite advances in the treatment of the disease, approximately 12,000 American patients will still die of MM in 2019. One of the mainstays of treatment for MM is the immunomodulatory and antiangiogenic drug lenalidomide; which is used in induction therapy, maintenance therapy and treatment of relapsed disease. Although not fully elucidated, lenalidomide's mechanism of action in MM involves the drug binding to Cerebelon (CBN) and leads to the subsequent degradation of the Ikaros (IKZF1) and Aiolos (IKZF3) transcription factors (TF). These TFs play important regulatory roles in lymphocyte development. Despite lenalidomide's importance in MM treatment, several groups have reported that MM patients treated with lenalidomide rarely go on to develop B-cell acute lymphoblastic leukemia (B-ALL). The genetics and clonal relationship between the MM and subsequent B-ALL have not been previously defined. Importantly, it is not clear if the MM and B-ALL arise from the same founding clone that has been under selective pressure during lenalidomide treatment. As deletions in IKZF1 are common in B-ALL, one could hypothesize that lenalidomide's mechanism of action mimics this alteration and contributes to leukemogenesis.

We sequenced the tumors from a cohort of seven patients with MM treated with lenalidomide who later developed B-ALL. These data did not show any mutational overlap between the MM and ALL samples-the tumors arose from different founding clones in each case. However, several genes were recurrently mutated in the B-ALL samples across the seven patients. These genes included TP53, ZFP36L2, KIR3DL2, RNASE-L, and TERT. Strikingly, five of the seven patients had a TP53 mutations in the B-ALL sample that was not present in the matched MM sample. The frequency of TP53 mutations in our cohort was much higher than that reported in adult de novo B-ALL patients which can range between 4.1-6.4% (Hern√°ndez-Rivas et al. 2017 and Foa et al. 2013). Utilizing CRISPR-Cas9 gene editing, we disrupted the Zfp36l2 or Actb in murine hematopoietic stem cells (HSCs) of mice with or without loss of Trp53. We performed our first transplantation experiment in which the cohorts of mice have loss of Trp53 alone, loss of Zfp36l2 alone, loss of both Trp53 and Zfp36l2, or a control knockout (KO) of Actb. To characterize the disruption of Zfp36l2 alone and in combination with Trp53 we analyzed the hematopoietic stem and progenitor cell compartments in the bone marrow of the above transplanted mice. In mice with a loss of Zfp36l2 there is a decrease in Lin- Sca-1+ c-Kit+ (LSK), short term-HSC (ST-HSC), and multipotent progenitors (MPP). This decrease was not observed in the mice with a loss of both Trp53 and Zfp36l2, where instead we noted an increase in monocyte progenitors (MP), granulocytes-macrophage progenitors (GMP), and common myeloid progenitors (CMP) cells. In this Trp53 Zfp36l2 double loss model we also noted a decrease in B220+ B-cells that was not seen in the Zfp36l2 alone. In this cohort of Trp53 Zfp36l2 loss, we characterized B-cell development through hardy fraction flow cytometry, and identified a decrease in fractions A and B/C (pre-pro and pro-B-cells, respectively) as compared to Zfp36l2 or Actb alone.

As lenalidomide does not bind to Cbn in mice, we used the human B-ALL NALM6 cell line to test if treatment with lenalidomide will lead to a selective growth advantage of cells with the same genes knocked out versus wild-type control cells grown in the same culture. We hypothesize that lenalidomide treatment selectively enriched for pre-existing mutated cell clones that evolved into the B-ALL. Preliminary data in NALM6 cells with a loss of TP53 demonstrate a slight increase in cell number at day 7 compared to a RELA control. These experiments will be repeated with concurrent ZFP36L2 and TP53 mutations as well as ZFP36L2 alone. Treatment-related disease is a key consideration when deciding between different treatment options, and this project aims to understand the relationship between MM treatment and B-ALL occurrence. It may be possible to identify MM patients who are at-risk for B-ALL. For example, MM patients who harbor low-level TP53 mutations prior to lenalidomide treatment could be offered alternative treatment options.

Disclosures

Barnell:Geneoscopy Inc: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. Wartman:Novartis: Consultancy; Incyte: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.