INTRODUCTION

Nelfinavir is a highly lipophilic, first generation HIV-protease inhibitor (HIV-PI) approved for HIV treatment. It has largely been replaced by next-generation HIV-PI with increased specificity and efficacy for HIV therapy, partly reflecting the significant rate of the off-target activity of nelfinavir. Increasing preclinical and clinical evidence shows that nelfinavir has broad anti-cancer activity as a single agent and in combination, potentially related to its off-target activity in mammalian cells. Nelfinavir is particularly effective in the treatment of proteasome inhibitor-refractory multiple myeloma (MM), where the combination of nelfinavir+bortezomib+dexamethasone yielded an overall response rate (ORR, PR or better) > 65% in a Phase II clinical trial. The targets and molecular mechanism of action of nelfinavir in MM are unknown. This hampers both, a rational clinical repositioning and development of nelfinavir as antineoplastic drug, as well as the design, synthesis and testing of next generation nelfinavir-like compounds with optimized antineoplastic activity and improved specificity or pharmacologic properties. We therefore aimed to take an unbiased target-identification approach to identify molecular targets of nelfinavir in human malignant cells and link them to cell biological processes and mechanisms that mediate sensitivity or resistance to nelfinavir treatment.

METHODS

Proteome-wide affinity-purification of targets binding the nelfinavir active site was combined with genome-wide CRISPR/Cas9-based screening to identify protein partners interacting with nelfinavir and candidate genetic contributors affecting nelfinavir cytotoxicity. Multiple intracellular reporter systems including RUSH system, ATP/ADP constructs; FRAP microscopy, Seahorse measurements, flow cytometry, qPCR, metabolic labelling, lipidomics and viability assays were used to dissect functional alterations in pathways related to nelfinavir targets.

RESULTS

We identified a common set of proteins interacting specifically with the active site of nelfinavir. These proteins are embedded in intracellular, lipid-rich membranes of mitochondria (VDAC1,2,3, ANT2), endoplasmic reticulum (BCAP31, CANX, SRPRB) and nuclear envelope (PGRMC2) and are consistent across multiple cancer cell types. ADIPOR2, a key regulator gene of membrane lipid fluidity, was identified as a key nelfinavir resistance gene, while genes involved in fatty acids (FAs) and cholesterol metabolism, vesicular trafficking and mitochondria biogenesis are candidate sensitivity genes. We further show that via binding to proteins in lipid-rich membranes nelfinavir affects membrane composition and reduces membrane fluidity, leading to induction of FAs synthesis and the unfolded protein response (UPR). Via its structural interference with membrane fluidity, nelfinavir impairs the function and mobility of a diverse set of membrane-associated proteins and processes, such as glucose flux and processing, mitochondria respiration, energy supply, transmembrane vesicular transport and ABCB1-mediated drug efflux, as we show in different reporter systems in live MM cells. These functional effects are prevented by addition of metabolically inert lipids to be incorporated in membranes, supporting a direct structural activity of nelfinavir. The adaptive biology of proteasome inhibitor (PI)-resistant myeloma relies on metabolic reprogramming and changes in lipid composition, drug export and down-modulation of the UPR. Modulation of membrane fluidity and depletion of FAs/cholesterol is synergistic with proteasome inhibitors in PI-resistant MM. Thus, the mechanism of action of nelfinavir perfectly matches with the biology of PI-resistant MM, serving as a molecular rational for its significant clinical activity.

CONCLUSION

We here demonstrate in vitro that the activity of nelfinavir against MM cells is triggered through changes in lipid metabolism and the fluidity of lipid-rich membranes. Pharmacologic targeting of membrane fluidity is a novel, potent mechanism to achieve anti-cancer activity, in particular against PI-refractory MM. This mechanism explains the clinical activity of nelfinavir in MM treatment as well as the key side effects of nelfinavir during antiretroviral therapy.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.