Background

Copy-number alterations (CNAs) and gene mutations are hallmarks of cancer genomes, and they are implicated in the development of myeloid neoplasm. However, their relationships have not been fully examined. To address this issue, we have recently developed a novel, next-generation sequencing-based platform for copy-number analysis, which enabled us to detect mutations and CNAs simultaneously. We applied this platform to around 2,000 cases with myeloid neoplasms.

Aims

We aimed at delineating the landscape of CNAs and their relationships with gene mutations in myeloid neoplasms.

Methods

We examined 2,101 cases with myeloid neoplasms by whole-exome sequencing (WES) or targeted deep sequencing. Excluding 116 samples showing low qualities of copy-number signals, we performed subsequent analysis on the remaining 1,985 cases with myelodysplastic syndromes (MDS, n = 1,102), myelodysplastic/myeloproliferative neoplasms (MDS/MPN, n = 140), de novo acute myeloid leukemia (de novo AML, n = 448), and secondary AML (sAML, n = 295).

In copy-number analysis, total copy numbers and allele-specific copy numbers (ASCNs) were quantified based on sequencing depths and allelic ratios on genome-wide probes. Copy-number signals were corrected for multiple biases (e.g. GC content, ASCN, and fragment length). We also validated the performance of this platform through comparison with SNP-array karyotyping data in 115 de novo AML cases. CNAs longer than 5 Mb were regarded as arm-level CNAs, and those shorter than 5 Mb were regarded as focal CNAs.

Results

In total, we identified 4,141 CNAs (52.9 % of cases with at least one CNA), and 3,863 mutations (73.9 % of cases with at least one mutation). Most frequent alterations included -7/del(7q) (13.2 %), del(5q) (11.4 %), trisomy 8 (7.2 %), and del(20q) (5.2 %), and mutations of TET2 (12 .3 %), TP53 (11.3 %), ASXL1 (10.1%), and DNMT3A (9.9 %).

To evaluate the difference of copy-number landscapes between de novo AML and myelodysplasia (MDS, MDS/MPN, and sAML), we compared the frequencies of CNAs between them. Uni-parental disomy (UPD) of 13q (FLT3) and 11p (WT1), and amplifications of 11q, 13q, and 21q (ERG) were more enriched in de novo AML, while der(1;7), UPD of 11q (CBL), and del(20q) were enriched in myelodysplasia, suggesting differential involvements of CNAs. We next analyzed the correlations between CNA profiles and prognosis in cases with myelodysplasia. Since TP53 status implies a large impact on both patients' prognosis and CNA profiles, we separately analyzed TP53-positive (n = 53) and negative (n = 686) cases with available survival data. In TP53-negative cases, -7/7qLOH (Hazard ratio(HR): 2.28, q < 0.001), and UPD of 11q (CBL) (HR: 2.60, q = 0.0034) significantly correlated with shorter overall survivals (OS), while, in TP53-positive cases, amp(11q), +19, and amp(21q) were marginally associated with shorter OS.

To delineate the relationships between CNAs and mutations, we interrogated correlations between both lesions among MDS cases without TP53 alterations (n = 937). A number of significant correlations were detected, such as those between trisomy 8 and del(20q) with U2AF1 mutations (q < 0.05, for each), and monosomy 7 and amp(21q) with mutations of RUNX1 and NRAS (q < 0.01, for each). These correlations were also revealed in clustering analysis based on CNA and mutation profiles, which identified 5 unique clusters: Cluster 1 (n = 171) with trisomy 8, del(20q), and mutations of U2AF1 and ETV6, Cluster 2 (n = 43) with monosomy 7, amp(21q), and mutations of NRAS, SETBP1, and RUNX1, Cluster 3 (n = 19) with amp(1q) and amp(3q), Cluster 4 (n = 127) with those of SF3B1, TET2, and DNMT3A, and Cluster 5 (n = 50) with those of SRSF2, STAG2, ASXL1, and RUNX1. The remaining 527 cases were not assigned into any cluster due to lack of significantly correlated alterations. Finally, the temporal relationships of coexisting alterations were estimated based on their cell fractions; monosomy 7 had significantly greater cell fractions (P = 0.031) and is predicted to precede NRAS mutations, while the cell fractions of U2AF1 mutations tended to be greater than those of trisomy 8 (P = 0.063), suggesting their implications in different stages of disease progression.

Conclusion

An integrated analysis of CNAs and mutations in >2,000 cases revealed the impacts of CNAs on disease characteristics and provided novel insight into the interplay between CNAs and mutations in the pathogenesis of MDS.

Disclosures

Atsuta:CHUGAI PHARMACEUTICAL CO., LTD.: Honoraria; Kyowa Kirin Co., Ltd: Honoraria. Kanda:Celgene: Consultancy, Research Funding; Novartis: Research Funding; Shionogi: Consultancy, Honoraria, Research Funding; Nippon-Shinyaku: Research Funding; Taiho: Research Funding; Asahi-Kasei: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Research Funding; Eisai: Consultancy, Honoraria, Research Funding; Eisai: Consultancy, Honoraria, Research Funding; Dainippon Sumitomo: Consultancy, Honoraria, Research Funding; Otsuka: Research Funding; Kyowa-Hakko Kirin: Consultancy, Honoraria, Research Funding; Ono: Consultancy, Honoraria, Research Funding; MSD: Research Funding; Chugai: Consultancy, Honoraria, Research Funding; CSL Behring: Research Funding; Taisho-Toyama: Research Funding; Tanabe Mitsubishi: Research Funding; Dainippon Sumitomo: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Kyowa-Hakko Kirin: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Astellas: Consultancy, Honoraria, Research Funding; Takara-bio: Consultancy, Honoraria; Novartis: Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Sanofi: Research Funding; Pfizer: Research Funding; Asahi-Kasei: Research Funding; Alexion: Consultancy, Honoraria; CSL Behring: Research Funding; Takara-bio: Consultancy, Honoraria; Mochida: Consultancy, Honoraria; Taiho: Research Funding; Celgene: Consultancy, Research Funding; Tanabe Mitsubishi: Research Funding; Taisho-Toyama: Research Funding; Pfizer: Research Funding; Sanofi: Research Funding; Mochida: Consultancy, Honoraria; Alexion: Consultancy, Honoraria; Otsuka: Research Funding. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees. Saunthararajah:EpiDestiny: Consultancy, Equity Ownership, Patents & Royalties; Novo Nordisk: Consultancy. Miyazaki:Chugai: Research Funding; Otsuka: Honoraria; Novartis: Honoraria; Nippon-Shinyaku: Honoraria; Dainippon-Sumitomo: Honoraria; Kyowa-Kirin: Honoraria. Usuki:Boehringer-Ingelheim Japan: Other: Received Research ; Daiichi Sankyo: Other: Received Research ; SymBio Pharmaceuticals Limited.,: Other: Received Research ; Novartis: Speakers Bureau; Ono Pharmaceutical: Speakers Bureau; Takeda Pharmaceutica: Speakers Bureau; Chugai Pharmaceutical: Speakers Bureau; Nippon Shinyaku: Speakers Bureau; Mochida Pharmaceutical: Speakers Bureau; MSD K.K.: Speakers Bureau; Celgene Corporation: Other: Received Research , Speakers Bureau; Sumitomo Dainippon Pharma: Other: Received Research , Speakers Bureau; Pfizer Japan: Other: Received Research ; Stellas Pharma: Other: Received Research ; Otsuka: Other: Received Research ; Kyowa Kirin: Other: Received Research ; GlaxoSmithKline K.K.: Other: Received Research ; Sanofi K.K.: Other: Received Research ; Shire Japan: Other: Received Research ; Janssen Pharmaceutical K.K: Other: Received Research . Imada:Bristol-Meyer Squibb K.K.: Honoraria; Celgene K.K.: Honoraria; Chugai Pharmaceutical Co., Ltd.: Honoraria; Kyowa Hakko Kirin Co., Ltd.: Honoraria; Ono Pharmaceutical Co., Ltd.: Honoraria; Otsuka Pharmaceutical Co., Ltd.: Honoraria; Astellas Pharma Inc.: Honoraria; Novartis Pharma K.K.: Honoraria; Takeda Pharmaceutical Co.,LTD.: Honoraria; Nippon Shinyaku Co.,Ltd.: Honoraria. Takaori-Kondo:Kyowa Kirin: Research Funding; Pfizer: Honoraria; Janssen: Honoraria; Chugai: Research Funding; Takeda: Research Funding; Ono: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria, Research Funding. Kiguchi:Celltrion, Inc.: Research Funding; Astellas Pharmaceutical Co., Ltd.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; MSD CO., Ltd.: Research Funding; Novartis Pharmaceutical Co., Ltd.: Research Funding; Sumitomo Dainippon Pharmaceutical Co., Ltd.: Research Funding; Bristol-Myeres Squibb Co., Ltd.: Research Funding; Janssen Pharmaceutical Co., Ltd.: Research Funding; Celgene Co., Ltd.: Research Funding; SymBio Pharmaceutical Co., Ltd.: Research Funding; Taiho Pharmaceutical Co., Ltd.: Research Funding; Tejin Co., Ltd.: Research Funding; Sanofi K.K., Ltd.: Research Funding. Maciejewski:Alexion: Consultancy; Novartis: Consultancy. Ogawa:Asahi Genomics: Equity Ownership; Qiagen Corporation: Patents & Royalties; Dainippon-Sumitomo Pharmaceutical, Inc.: Research Funding; RegCell Corporation: Equity Ownership; ChordiaTherapeutics, Inc.: Consultancy, Equity Ownership; Kan Research Laboratory, Inc.: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.