Sickle cell disease (SCD) and Beta thalassemia are disorders of beta globin production and function that lead to severe anemia and significant disease complications across a multitude of organ systems. Autologous transplantation of hematopoietic stem cells engineered through the upregulation of fetal hemoglobin (HbF) or correction of the beta globin gene have the potential to reduce disease burden in patients with beta hemoglobinopathies. Base editing is a recently developed technology that enables precise modification of the genome without the introduction of double strand DNA breaks.

Gamma globin gene promoters were comprehensively screened with cytosine and adenine base editors (ABE) for the identification of alterations that would derepress HbF. Three regions were identified that significantly upregulated HbF, and the most effective nucleotide residue conversions are supported by natural variation seen in patients with hereditary persistence of fetal hemoglobin (HPFH). ABEs have been developed that significantly increase the level of HbF following nucleotide conversion at key regulatory motifs within the HBG1 and HBG2 promoters. CD34+ hematopoietic stem and progenitor cells (HSPC) were purified at clinical scale and edited using a process designed to preserve self-renewal capacity. Editing at two independent sites with different ABEs reached 94 percent and resulted in up to 63 percent gamma globin by UPLC. The levels of HbF observed should afford protection to the majority of SCD and Beta thalassemia patients based on clinical observations of HPFH and non-interventional therapy that links higher HbF dosage with milder disease (Ngo et al, 2011 Brit J Hem; Musallam et al, 2012 Blood).

Directly correcting the Glu6Val mutation of SCD has been a recent goal of genetic therapies designed for the SCD population. Current base editing technology cannot yet convert mutations like those that result from the A-T transversion in sickle beta globin; however, ABE variants have been designed to recognize and edit the opposite stranded adenine residue of valine. This results in the conversion of valine to alanine and the production of a naturally occurring variant known as Hb G-Makassar. Beta globin with alanine at this position does not contribute to polymer formation, and patients with Hb G-Makassar present with normal hematological parameters and red blood cell morphology. SCD patient fibroblasts edited with these ABE variants achieve up to 70 percent conversion of the target adenine. CD34 cells from healthy donors were then edited with a lead ABE variant, targeting a synonymous mutation in an adjacent proline that resides within the editing window and serves as a proxy for editing the SCD mutation. The average editing frequency was 40 percent. Donor myeloid chimerism documented at these levels in the allogeneic transplant setting exceeds the 20 percent that is required for reversing the sickle phenotype (Fitzhugh et al, 2017 Blood).

These next generation editing approaches provide a promising new modality for treating patients with Beta thalassemia and SCD.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.