Background: Anti-tumoral response of Vg9Vd2 T cells requires sensing of phosphoantigens accumulated in malignant cells through binding of butyrophilin 3A(BTN3A). Moreover, an unknown partner located in human Chr6 was shown to be mandatory to BTN3A-mediated Vg9Vd2 T cell activation in murine models. Here, we identified butyrophilin 2A (BTN2A), which is located to Chr6, as a requirement for BTN3A-mediated Vg9Vd2 T cell cytotoxicity against cancer cells.

Methods: CRISPR-Cas9-mediated inactivation of BTN2A1/2A2 isoforms was performed in Daudi, K562 and HEK-293T cells. Vg9Vd2 T cells expanded from healthy PBMCs were co-cultured with wild-type or BTN2AKO cells +/- BrHPP (1 µM), HMBPP (0.1 µM) or zoledronate (45 µM), or anti-BTN2A mAb, and Vg9Vd2 T cell degranulation (%CD106ab+ cells), and intracellular TNFa and IFNg assessed after 4h. Mouse T cell hybridoma 53/4 expressing TCRVg9Vd2-MOP were co-cultured overnight with NIH3T3 murine fibroblasts transfected with BTN3A- and/or BTN2A-encoding plasmids +/-HMBPP(10 µM), or increasing doses of HMBPP or anti-BTN3 20.1 mAb. BTN2A transcript expression in normal vs. tumoral tissue was analyzed using GEPIA tool. Anti-BTN2A mAb staining was performed on human samples of primary AML, cervical and pancreatic carcinoma and assessed by flow cytometry.

Results: Degranulation and intracellular IFNg/TNFa (n=6) were abolished in Vg9Vd2 T cells co-cultured with BTN2AKO Daudi, K562 and HEK-293T cells compared to wild-type, in all conditions tested including anti-BTN3 20.1. Murine cells do not express no BTN2A1 or BTN3A orthologs and are unable to activate human Vg9Vd2 T cells. Ectopic expression of BTN2A and BTN3A combination but neither BTN2A or BTN3A alone in murine NIH3T3 cells, allows triggering of IL-2 secretion in mouse 53/4-TCRVg9Vd2-MOP reporter cells in presence of HMBPP or 20.1 mAb in dose-dependent manner. Anti-BTN2A mAb was able to suppress Vg9Vd2 T cell degranulation/cytokine secretion against cancer cell lines and activation of mouse 53/4-TCRVg9Vd2-MOP reporter by BTN2A/BTN3A-expressing NIH3T3 in a dose-dependent manner. BTN2A transcript was significantly up-regulated in pancreatic, ovarian and cervical carcinoma vs. normal tissue. Extracellular BTN2A protein was detected in primary hematological and solid tumors.

Conclusion: Here, we show that BTN2A is mandatory for BTN3A-mediated function in human Vg9Vd2 T cells. Moreover, concomitant BTN2A and BTN3A expression empowers murine T cells with activation through Vg9Vd2 TCR, opening new roads for mouse models of Vg9Vd2 T cell anti-tumoral responses. We describe an anti-BTN2A able to suppress Vg9Vd2 T cell function, and we show BTN2A expression in primary tumors. These results are relevant for understanding Vg9Vd2 T cell antitumoral immunity triggered by phosphoantigens and amino-bisphosphonates.


Olive:ImCheck Therapeutics: Consultancy, Equity Ownership, Patents & Royalties; GlaxoSmithKline: Patents & Royalties.

Author notes


Asterisk with author names denotes non-ASH members.