Background: The addition of Rituximab to front-line therapy has improved clinical outcomes in diffuse large B-cell lymphoma (DLBCL), but it has also altered the biology of relapsed/refractory disease. To better understand the mechanisms responsible for Rituximab associated chemotherapy cross-resistance our group developed and characterized several Rituximab resistance cell lines (RRCL). We previously demonstrated using SiRNA interference, that X-linked inhibitor of apoptosis (XIAP) is critical for chemotherapy sensitivity and survival in RRCL. MX69, a dual inhibitor of Mdm2 and XIAP that indirectly downregulates XIAP, is undergoing pre-clinical testing. MX69 affects XIAP levels by its effects on the ubiquitination and degradation of endogenous MDM-2, resulting in decrease XIAP translation and activation of caspase 3, 7 and 9 as well as PARP cleavage leading to apoptosis of cancer cells. In our current work, we pharmacologically inhibited XIAP in lymphoma pre-clinical models using MX69.

Materials and Methods: A panel of Burkitt's Lymphoma (BL, including RRCL), germinal center B-cell (GCB)-DLBCL (including RRCL), activated B-cell (ABC)-DLBCL, Mantle cell Lymphoma (MCL) and Pre-B cell Leukemia cell lines were exposed to MX69 as a single agent (0-80uM) over 24, 48, 72 hrs and IC50 concentrations were calculated for each cell line. Changes in Mdm2, p53, XIAP and PARP expressions were determined following MX69 exposure (at IC50 doses) for 24 hrs. Induction of apoptosis was evaluated by Annexin V/propidium iodine staining. Subsequently, cell lines were exposed to MX69 (0-80 uM), in combination with Doxorubicin (0-1uM), Cytarabine(0-50uM), Vincristine (0-10nM), Etoposide(0-50uM), Carboplatin (0-20uM), Ixazomib (0-1.5uM), Ibrutinib (0-20uM) and Venetoclax (0-10uM) for 48 hours. Cell viability was determined by Cell Titerglo. Coefficient of synergy was calculated using CalcuSyn.

Results: In vitro, MX69 single agent exposure induced cell death in a dose and time-dependent manner in all cell lines tested. Western blotting studies confirmed downregulation of Mdm2, XIAP and changes in P53 and PARP, following in vitro exposure to MX69. Induction of apoptosis was observed by flow cytometry in all cell lines tested. The combination of MX69 with Doxorubicin, Cytarabine, Vincristine, Ixazomib, Carboplatin, Etoposide, Ibrutinib, and Venetoclax resulted in significant synergistic activity. The strongest CI of synergy was observed when cell lines were exposed to MX69 and Venetoclax, Ixazomib, Etoposide or Ibrutinib.

Conclusion: Our data suggests that in vitro exposure of a wide variety of B-cell lymphoma cell lines (including BL, DLBCL, MCL or RRCL) to MX69 resulted in anti-tumor activity. Perhaps related to its anti-tumor effects, MX69 inhibited XIAP levels. These findings are similar to prior SiRNA XIAP knockdown experiments. Strong synergistic activity was observed when XIAP was combined with various chemotherapy agents and small molecules inhibitors (such as Venetoclax, ixazomib or ibrutinib). Ex vivo experiments using primary tumor cells isolated from lymphoma patients and lymphoma mouse models are been planned. Targeting Mdm2 and XIAP can be an attractive therapeutic strategy in patients with Rituximab-sensitive or -resistant B-cell lymphoma.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.

Sign in via your Institution