Abstract

Introduction: Primary Plasma Cell Leukemia (pPCL) is a rare form of multiple myeloma (MM) that is characterized by an aggressive disease course with >20% peripherally circulating plasma cells (PCs) and poor clinical outcome. Despite the advances of modern anti-MM therapy, pPCL patients continue to experience low median overall survival (OS) suggesting a distinct biological background. Due to its low incidence of 1-2% of all MM patients, studies on physiopathology remain challenging and are limited. The aim of this study was to elucidate the differences in biology and outcome between non-pPCL MM and pPCL, to determine the genetic landscape of pPCL and to identify distinct signatures and pathways that potentially could be used as therapeutic targets.

Methods: We performed gene expression profiling (GEP; Affymetrix U133 Plus 2.0) of matched circulating peripheral PCs and bone marrow (BM) PCs from 13 patients. Whole exome sequencing (WES) was performed on purified CD138+ PCs from BM aspirates from 19 pPCL patients with a median depth of 61x. CD34+ sorted cells, taken at the time of stem cell harvest from the same 19 patients, were used as controls. Translocations and mutations were called using Manta and Strelka and annotated as previously reported. Copy number was determined by Sequenza.

Results: GEP from the BM and circulating peripheral PCs showed that the expression patterns of the two samples from each individual clustered together, indicating that circulating PCs and BM PCs in pPCL result from the same clone and are biologically clearly related. The clinical characteristics from the patient cohort used for WES analysis were as follows: median age was 58 years (range 36-77), females accounted for 74% (14/19), an elevated creatinine level was found in 78% (14/18) and an elevated LDH level in 71% (10/14). All patients presented with an ISS stage of III. Median OS of the whole dataset was poor at 22 months, which is consistent with OS from previously reported pPCL cohorts. Primary Immunoglobulin translocations were common and identified in 63% (12/19) of patients, including MAF translocations, which are known to carry high risk in 42% (8/19) of patients [t(14;16), 32% and t(14;20), 10%] followed by t(11;14) (16%) and t(4;14) (10%). Furthermore, 32% (6/19) of patients had at least one MYC translocation, which are known to play a crucial role in disease progression. MYC breakpoints (8q24) were identified in 25% with Ig partner loci including IGH (5%), IGK (10%), and IGL (10%). The remaining samples had partner loci including FAM46C (5%), MYNN (5%), SPARC (5%), QRSL1 (5%), RNF126 (5%), PLXNA4 (5%) and CDH7 (5%).

The mutational burden of pPCL consisted of a median of 98 non-silent mutations per sample, suggesting that the mutational landscape of pPCL is highly complex and harbors more coding mutations than non-pPCL MM. Driver mutations, that previously have been described in non-pPCL MM showed a different prevalence and distribution in pPCL, including KRAS and TP53 with 47% (9/19) and 37% (7/19) affected patients respectively compared to 21% and 5% in non-PCL MM. PIK3CA (5%), PRDM1 (10%), EP300 (10%) and NF1 (10%) were also enriched in the pPCL group compared to previously reported cases in non-pPCL MM. Biallelic inactivation of TP53 - a feature of Double Hit myeloma - was found in 6/19 (32%) samples, indicating a predominance of high risk genomic features compared to non-pPCL MM. Furthermore, analysis of mutational signatures in pPCL showed that aberrant APOBEC activity was highly prevalent only in patients with a MAF translocation, but not in other translocation groups.

Conclusion: In conclusion we present one of the first WES datasets on pPCL with the largest patient cohort reported to date and show that pPCL is a highly complex disease. The aggressive disease behavior can, at least in part, be explained by a high prevalence of MAF and MYC translocations, TP53 and KRAS mutations as well as bi-allelic inactivation of TP53. It is of interest that only KRAS but not NRAS mutations are highly enriched in pPCL. From all highly prevalent genomic alterations in pPCL, only KRAS mutations offer a potential for already available therapeutically targeting with MEK inhibitors, which should be further explored.

Disclosures

Davies:Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; ASH: Honoraria; TRM Oncology: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Abbvie: Consultancy; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; MMRF: Honoraria. Barlogie:Multiple Myeloma Research Foundation: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Morgan:Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.