Abstract

Background: Tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukemia (CML) are not entirely selective for the BCR-ABL1 kinase but also inhibit a variety of other kinases, sometimes triggering unpredicted biological effects. As an example, the TKIs dasatinib and bosutinib both inhibit Src-kinases, which are important mediators of T-cell function. Earlier in vitro data has shown that dasatinib can suppress activation and proliferation of T and NK cells, but it can also elicit signs of immunostimulation in patients, including rapid mobilization of lymphocytes and LGL lymphocytosis. No extensive analyses of the immunological in vivoeffects of bosutinib have been performed thus far. Therefore, we aimed at characterizing T and NK cell phenotypes and functional features in CML patients in a clinical setting in the context of first-line bosutinib and imatinib treatment.

Methods:Peripheral blood samples were obtained from newly diagnosed CML CP patients enrolled in the BFORE clinical trial (NCT02130557), receiving bosutinib (n=13) or imatinib (n=20) as frontline TKI treatment. Samples were drawn at diagnosis and following 3 and 12 months of therapy. Detailed immunophenotyping of NK and T cells was performed with multicolor flow cytometry. In addition, mononuclear cells were used to study the function of NK and T cells (CD107ab degranulation upon stimulation with K562 cells and detection of IFN-γ/TNF-α secretion after stimulation with anti-CD3/anti-CD28 antibodies, respectively). Moreover, blood differential counts were taken before and 2 hours after drug intake at 3 and 12 months to examine the direct effects on lymphocyte counts (mobilization).

Results: No significant changes were observed in absolute white blood cell or lymphocyte counts directly (2 hours) after bosutinib or imatinib intake, in contrast to what has been observed in dasatinib treated patients.

Analysis of T cell subsets during bosutinib treatment revealed that the proportion of CD4+ cells increased after the start of treatment (median dg. 60.0% vs. 3 months 62.0% p=0.06; vs. 12 months 72.8% p=0.03), but no significant changes were observed in the phenotype. Correspondingly, the proportion of CD8+ T-cells decreased moderately (dg. 31.6% vs. 3 months 25.5% p=0.01) after the therapy start. Interestingly, the proportion of PD1+ (dg. 19.6% vs. 3 months 11.9%, p=0.06; vs. 12 months 14.3%, p=0.11) and DNAM+ CD8+ T-cells decreased (dg. 73.1% vs. 3 months 66.2% p=0.004; vs. 12 months 64.6% p=0.02). No changes in the cytokine production of any of the studied subgroups of T-cells was observed. Moreover, the proportion, phenotype and function of NK-cells were not affected by bosutinib treatment.

In contrast, during imatinib treatment the proportion of CD56+CD16+ NK-cells significantly increased (dg 4.3% vs. 3 months 9.9% p=0.0005; vs 12 months 14.4% p=0.002; 8.1% in bosutinib treated patients). Moreover, in imatinib patients NK-cells downregulated CD27 (dg 9.0% vs. 3 months 5.2% p=0.004; vs. 12 months 4.9%; p=0.002). Further, NK-cells from imatinib-treated patients expressed more CD107ab upon stimulation with K562 at 3 and 12 months, when compared to samples from diagnosis (dg 13.0% vs. 3 months 16.1%, p=0.01; vs. 12 months 23.2%, p=0.008).

The proportion of CD4+ T-cells increased 3 months after the start of imatinib treatment (dg 60.1% vs. 3 months 63.5% p=0.01), whereas the percentage of CD8+ T-cells decreased (dg. 38.6% vs. 3 months 31.5% p=0.02). Decreased expression of DNAM (dg 73.5% vs. 3 months 67.9% p=0.0008; vs. 12 months 62.4% p=0.002) was observed in the CD4+ T-cells. Similarly as in bosutinib treated patients, the proportion of PD1+ CD8+ cells decreased during imatinib treatment (dg 18.2% vs. 3 months 14.7%, p=0.02; vs. 12 months 14.8%, p=0.03).

Both CD4+ and CD8+ T-cell subsets from imatinib-treated patients secreted less cytokines after the start of treatment when compared to the pre-treatment samples.

Conclusions: Despite of the Src-kinase inhibitory profile of bosutinib, no major changes were observed in T- or NK-cell phenotype or function during first-line bosutinib treatment. In contrast, in imatinib treated patients the proportion of NK-cells increased and their degranulation responses were significantly higher than in untreated CML patients. Comparison of these data with the clinical variables and treatment outcome is warranted.

Disclosures

Stentoft:Novartis: Research Funding; Bristol-Myers-Squibb: Research Funding; Pfizer: Research Funding; Ariad: Research Funding. Gjertsen:BerGenBio AS: Consultancy, Research Funding. Janssen:Pfizer: Honoraria; Novartis: Research Funding; Ariad: Honoraria; BMS: Honoraria. Brümmendorf:Pfizer: Research Funding; Novartis: Research Funding. Richter:BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Ariad: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding. Mustjoki:Pfizer: Honoraria, Research Funding; Ariad: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.