Abstract

The International Myeloma Working Group consensus updates the definition for high-risk (HR) multiple myeloma based on cytogenetics Several cytogenetic abnormalities such as t(4;14), del(17/17p), t(14;16), t(14;20), nonhyperdiploidy, and gain(1q) were identified that confer poor prognosis. The prognosis of patients showing these abnormalities may vary with the choice of therapy. Treatment strategies have shown promise for HR cytogenetic diseases, such as proteasome inhibition in combination with lenalidomide/pomalidomide, double autologous stem cell transplant plus bortezomib, or combination of immunotherapy with lenalidomide or pomalidomide. Careful analysis of cytogenetic subgroups in trials comparing different treatments remains an important goal. Cross-trial comparisons may provide insight into the effect of new drugs in patients with cytogenetic abnormalities. However, to achieve this, consensus on definitions of analytical techniques, proportion of abnormal cells, and treatment regimens is needed. Based on data available today, bortezomib and carfilzomib treatment appear to improve complete response, progression-free survival, and overall survival in t(4;14) and del(17/17p), whereas lenalidomide may be associated with improved progression-free survival in t(4;14) and del(17/17p). Patients with multiple adverse cytogenetic abnormalities do not benefit from these agents. FISH data are implemented in the revised International Staging System for risk stratification.

Introduction

Multiple myeloma (MM) is a proliferation of monoclonal plasma cells that produce a monoclonal protein.1  Indications for treatment are based on end-organ damage (hypercalcemia, renal impairment, anemia, bone lesions) and markers of active disease (ie, an involved:uninvolved serum-free light-chain ratio ≥100, bone marrow plasma cells ≥60%, or >1 lesion found on magnetic resonance imaging).2 

Response to treatment and survival of newly diagnosed MM (NDMM) is heterogeneous, with median overall survival (OS) ranging from 2 to >10 years. MM is characterized by chromosomal instability, and cytogenetic abnormalities (CA) have an impact on prognosis.1-4  This perspective will define high-risk (HR) CA and provide recommendations for treatment of HR NDMM patients.

Methods

We will describe techniques for identification of CA followed by a discussion of prognostic impact and treatments. This perspective was developed by an international expert panel based on evidence of published studies through November 15, 2015. The statement was drafted and circulated among all panel members, followed by rounds of revision.

Diagnostic techniques for CA

Conventional karyotyping.

Karyotyping reveals CA in 20% to 30% of patients, those being mainly numerical abnormalities. Several translocations including t(4;14) are not detected. The normal karyotype in patients with a low proliferation index corresponds to the kinetics of normal bone marrow cells. Abnormal karyotype had an unfavorable impact in the Total Therapy programs.5  Because more sensitive techniques reveal CA in nearly all MM, karyotyping is not a routine test.

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) is performed in interphase cells, thereby overcoming the problem of karyotyping. Purification of CD138-expressing plasma cells or dual staining for cytoplasmic immunoglobulin (Ig) and FISH are required for FISH. Currently, FISH is the standard technique for analysis of CA. Samples are usually screened for CA, which occur in >1% of patients. FISH is a practical cytogenetic tool to detect genomic aberration in situ and to enumerate the percentage of cells harboring such abnormalities. It does not detect single-nucleotide variants.6  For example, TP53 on chromosome 17p is deleted in 7% of myeloma, yet mutated at a much higher frequency in myeloma based on exome sequencing. Knowing these restrictions, FISH testing may include gain(1q), del(1p), t(4;14)(p16;q32), t(14;16(q32;q23), del(17p13), and a marker for aneuploidy (Table 1). For routine diagnosis, testing of t(4;14) and del(17p13) suffices.

Table 1

Primary and secondary genetic events that can be identified by FISH

Primary genetic events Secondary genetic events 
IgH translocation Gene(s) Frequency (%) Deletion Gene(s) Frequency (%) 
t(4;14) FGFR3/MMSET 15 1p CDKN2C, FAF1, FAM46C 30 
t(6;14) CCND3 6q  33 
t(11;14) CCND1 20 8p  25 
t(14;16) MAF 13 RB1, DIS3 44 
t(14;20) MAFB 11q BIRC2/BIRC3 
   14q TRAF3 38 
   16q WWOX, CYLD 35 
   17p TP53 
Hyperdiploidy Gain 
Trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19, 21 NA 50 1q CKS1B, ANP32E 40 
Primary genetic events Secondary genetic events 
IgH translocation Gene(s) Frequency (%) Deletion Gene(s) Frequency (%) 
t(4;14) FGFR3/MMSET 15 1p CDKN2C, FAF1, FAM46C 30 
t(6;14) CCND3 6q  33 
t(11;14) CCND1 20 8p  25 
t(14;16) MAF 13 RB1, DIS3 44 
t(14;20) MAFB 11q BIRC2/BIRC3 
   14q TRAF3 38 
   16q WWOX, CYLD 35 
   17p TP53 
Hyperdiploidy Gain 
Trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19, 21 NA 50 1q CKS1B, ANP32E 40 

Singe-nucleotide polymorphism–based mapping arrays.

High-resolution genome-wide analysis (GWAS) of single-nucleotide polymorphisms (SNP) detects regions with loss of heterozygosity and numerical abnormalities. SNP mapping arrays identify copy number variations (CNV). Translocations are not usually detected and will require additional FISH.

Comparative genomic hybridization.

Array-based comparative genomic hybridization is a tool for genome-wide classification of CNVs, which primarily detects numerical abnormalities.

Gene expression profiling.

Gene expression profiling (GEP) is a technique to identify expression of genes and pathways. Based on RNA expression using microarrays, subgroups of patients are identified with a unique GEP phenotype that partly corresponds to the TC classification.7  GEP from patients in clinical trials can be used to identify HR profiles with significant prognostic significance.8 

Consensus statement.

FISH is the standard approach for identification of primary genetic events and secondary numerical events. SNP-based mapping arrays and CGH are more sensitive techniques to detect small numerical aberrations, and therefore these can be used in clinical trials. GEP profiling is useful for prognostication and may require bioinformatics support.

High-risk CA

IgH translocations.

In MM, primary events are chromosome translocations involving the immunoglobulin heavy chain (IgH) locus and hyperdiploidy, with multiple copies of odd-numbered chromosomes (Table 1).9  IgH translocations are observed in 40% of cases. Frequently involved partner chromosomes/loci are 4p16 (FGFR3/MMSET) (12%-15%), 11q13 (CCND1) (15%-20%), 16q23 (MAF) (3%), 6p21 (CCND3) (<5%), and 20q11 (MAFB) (1%).10 

Translocation t(4;14) leads to deregulation of fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET).11,12  Because FGFR3 is not expressed in one third of patients with t(4;14), the target gene is most likely MMSET.13  t(4;14) is associated with impaired progression-free survival/overall survival (PFS/OS).14  Importantly, bortezomib seems to improve the negative prognostic impact of t(4;14).15-18  Prolonged survival was reported in t(4;14) treated with high-dose therapy (HDT) and tandem autologous stem cell transplant (ASCT).19,20  SNP arrays showed the heterogeneous adverse impact of t(4;14) related to concomitant CA.21 

Translocation t(14;16) results in deregulation of the c-MAF proto-oncogene and predicts poor outcome.11,12,22  An Intergroupe Francophone de Myelome (IFM) analysis showed no adverse impact of t(14;16), possibly because 60% of patients received a double ASCT.23  Translocation t(14;20) results in deregulation of the MAFB oncogene and confers a poor prognosis.12 

Translocation t(11;14) results in upregulation of cyclinD1 and was identified as favorable in some studies, whereas it had no impact in others.14,24,25  This translocation is associated with CD20 expression and a lymphoplasmocytic morphology. In general t(6;14), t(11;14), gain(5q), and hyperdiploidy do not confer poor prognosis.

Genomic imbalance.

Hyperdiploidy, which occurs in ∼50% of NDMM, is associated with improved PFS/OS.11,25  In the MRC IX trial, coexisting hyperdiploidy did not abrogate the poor prognosis of adverse CA.26  In contrast, in a retrospective analysis, PFS of patients with t(4;14) was negatively affected by del(1p32), del22q, and >30 structural CA, whereas del(6q) worsened PFS and del(1p32) worsened OS, and >8 numerical changes improved OS in del(17p).21  Modern techniques (GWAS) identify additional CNV above karyotypic hyperdiploidy.27 

Del(13q) predicts impaired PFS/OS when detected by karyotyping.28  The adverse impact of del(13q) by FISH is associated with del(17p) and t(4;14). del(13q) as single CA does not confer poor survival.11,12,25,29 

Del(17p) or del(17) has a negative impact on PFS/OS. Deletion of TP53 induces clonal immortalization and survival of tumor cells.30 

Patients with ≥3 copies of 1q have a worse treatment outcome, reflecting a dosage effect of genes such as CKS1B.12,29,31  Gain(1q) frequently coincides with del(1p32), which confers poor prognosis.21,32-34  Hypoploidy is regarded as a poor prognostic CA.

It is currently unclear which minimum percentage of cells carrying del(17p) is required for an adverse prognosis or whether this varies with the choice of therapy and stage of disease. Minimal percentages of 20% and 60% have been recommended for del(17p).12,21  An international effort will address this issue in a meta-analysis.

The prognostic impact of CA may vary from diagnosis to (refractory) disease because of the selection of subclonal disease.35  In solitary plasmacytoma or extramedullary disease, del(17p) may occur more frequently.36,37 

Multiple adverse CA.

Among patients with an adverse IgH translocation 62% have gain(1q) compared with 32.4% in controls.12  The frequency of del(17p) is similar in patients without adverse IgH translocations. Among patients with an IgH translocation and/or gain1q or del(17p), 20% shared ≥2 CA. When CA occurred in isolation, each lesion had a similar impact on OS. The triple combination of an adverse IGH translocation, gain(1q), and del(17p) was associated with a median OS of 9.1 months,12  demonstrating the progressive impact of cosegregation of multiple adverse CA on OS. The IFM showed that in 110 patients displaying either t(4;14) or del(17p), 25 had both abnormalities. In patients with t(4;14), PFS was worse with concomitant del(1p32), del(22q), and/or >30 structural changes, whereas del(13q14), del(1p32), and higher number of CA shortened OS. In patients with del(17p), del(6q)reduced PFS, whereas gain15 and del14 had a protective effect. Del(1p32) shortened OS, whereas >8 numerical changes improved OS.21 

Good combined with adverse CA.

Gain of 5(q31) improved outcome with hyperdiploid MM.38  Among patients with hyperdiploidy, trisomies 3 and 5 confer a favorable prognosis.21 

In the Myeloma IX study, 58% of patients had hyperdiploidy.39  Of these, 61% had ≥1 adverse lesion (t(4;14), t(14;16), t(14;20), gain1q, or del(17p). OS and PFS were worse in patients with hyperdiploidy plus an adverse lesion, compared with hyperdiploidy alone (median PFS, 23 vs 15.4 months; median OS, 60.9 vs 35.7 months). Alternatively, presence of hyperdiploidy did not change the outcome in patients with an adverse lesion.

Presence of trisomies in patients with t(4;14), t(14;16), t(14;20), or TP53 deletion in MM reduced their adverse impact.40 

Cytogenetic risk classifications

The definition of HR disease is subject to diagnostic and treatment options. With median PFS and OS of transplant-eligible (TE) patients approaching 4 and 10 years, most investigators consider HR disease as OS <3 years, with ultra-HR disease having a survival <2 years. For non–transplant-eligible patients (NTE) OS, <2 years is considered HR.41,42  It is important to define HR disease based on objective criteria.

Risk classifications based on FISH.

IMWG proposed a model of HR MM defined as at least one of the following: del17p, t(4;14), or t(14;16) determined by FISH.43  The Mayo Clinic classification added hypodiploidy and t(14;20) to the definition of HR MM (Table 2).44  Later classifications attempted to separate MM into several risk groups. In MRC IX, 3 groups were identified (ie, favorable risk [FR: no adverse IgH translocation, del(17p), or gain(1q]), intermediate risk (IR: 1 adverse CA), and HR (>1 adverse CA). Median PFS/OS of patients with FR, IR, or HR was 23.5, 17.8, and 11.7 months and 60.6, 41.9, and 21.7 months, respectively.12  Ultra-HR was defined as ≥3 CA (2%; median OS, 9 months). These classifications may change with treatment modalities. An example is t(4;14), which may be IR rather than HR when novel agents are given.15,45,46  IMWG stated that HR MM should include t(4;14), t(14;16), or del(17p).47 

Table 2

Summary of cytogenetic risk features

 High-risk Standard-risk 
Cytogenetic abnormality FISH: t(4;14), t(14;16), t(14;20), del(17/17p), gain(1q) All others including: FISH: t(11;14), t(6;14) 
Nonhyperdiploid karyotype
Karyotype del(13) 
GEP: high-risk signature 
 High-risk Standard-risk 
Cytogenetic abnormality FISH: t(4;14), t(14;16), t(14;20), del(17/17p), gain(1q) All others including: FISH: t(11;14), t(6;14) 
Nonhyperdiploid karyotype
Karyotype del(13) 
GEP: high-risk signature 

Risk classifications based on FISH and ISS.

The combination of International Staging System (ISS) with HR CA reflects tumor mass, patient condition, and genetics. IMWG showed that t(4;14) and/or del(17p) separates 2 groups with different event-free survival (EFS) and OS within each ISS stage.48  Combining t(4;14) and del(17p) with ISS stage improved prognostic staging.48  Neben et al combined ISS with t(4;14) or del(17p).11  Median PFS after ASCT were 2.7, 2.0, and 1.2 years for the FR group (ISS I, no HR CA), IR (ISS I and HR CA or ISS II/III without HR CA), and HR (ISS II/III and HR CA). Five-year OS were 72%, 62%, and 41%, respectively. Identical results were obtained in the Hovon-65/GMMG-HD4 trial.29 

The MRC IX study combined ISS and the presence of 0, 1, or >1 adverse CA. Median OS in the ultra-HR group, defined by ISS II or III plus >1 adverse CA, were 9.9 and 19.4 months, compared with OS 67.8 months in the favorable group.12 

Risk classifications based on FISH, ISS, and lactodehydrogenase.

A meta-analysis of randomized trials in NDMM confirmed that combining ISS, serum lactodehydrogenase (LDH), and FISH identifies 4 risk groups including a very HR population (5%-8%). Patients with ISS stage III, elevated LDH, and t(4;14) or del(17p) have a 2-year OS of only 54.6%.49  More recently, the revised ISS was defined, incorporating HR FISH (t(4;14), t(14;16), and del(17p) with ISS and LDH.50 

Gene expression profiling.

The prognostic impact of GEP by microarray was examined in several studies. The UAMS identified a 70-gene subset as an independent prognosticator.51  Presence of a HR signature (13.1%) resulted in inferior EFS (5-year EFS: 18% vs 60%) and OS (5-year OS: 28% vs 78%). In this signature, several genes mapped to chromosome 1(q) and (1p).20  The same group performed GEP analysis 48 hours after bortezomib dosing in TT3.52  Based on GEP changes, the UAMS-80 signature was constructed.

The EMC-92 signature was derived from patients in the Hovon-65/GMMG-HD4 trial. When combined with ISS, it predicts impaired PFS and OS across treatments.53,54  OS of HR patients (21%) at 5 years was 10% compared with 72% for others (79%). Other GEP-based risk models include the IFM-15 and MRC IX-6 gene signatures.55  In general, these GEP signatures are useful for prognostication, whereas prediction has to be validated.56 

mSMART.

The Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) criteria use a combination of FISH, plasma cell labeling index, and GEP as tools to identify 3 risk categories (standard risk [SR], IR, HR) for prognostication of patients with NDMM.57  Patients can be stratified for different therapeutic approaches.47  However, risk-adapted therapy has not been validated in prospective studies.

Consensus statement

Translocations t(4;14), t(14;16), t(14;20), and del(17/17p) and any nonhyperdiploid karyotype are HR cytogenetics in NDMM regardless of treatment. Gain(1q) is associated with del(1p) carrying poor risk. Combinations of ≥3 CA confer ultra-HR with <2 years survival. Routine testing should include t(4;14) and del(17p). Clinical classifications may combine these lesions with ISS, serum LDH, or HR gene expression signatures. CA may differ in first and later relapse because of clonal evolution, which may influence the effect of salvage treatment.

Treatment options for high-risk disease

IMWG recommends using the combination of FISH, LDH, and ISS stage for risk stratification in NDMM.47  Other features such as renal failure, plasma cell proliferative rate, and presence of extramedullary disease also contribute to risk. GEP is emerging as a prognostic tool for risk stratification. New approaches to predict survival include analysis of microRNAs, custom capture mutation analysis, and evaluation of methylation and splicing patterns.

Here we address the treatment choices for patients with HR NDMM based on cytogenetic profile. Recently, 2 reviews addressed the issue of general treatment strategies for HR myeloma.58,59  This review covers treatment options for t(4;14) and/or del(17/17p).

Thalidomide.

Thalidomide does not overcome adverse impact of HR CA. In the UAMS trial for RRMM, del(13q) by karyotyping had a shorter survival with thalidomide.60  Three trials studying thalidomide during induction in NDMM (MRC IX: CTD vs CTDa; HOVON50/GMMG-HD2: VAD vs TAD; GEM2005:TD) observed shorter OS in HR CA.61-64  Thalidomide maintenance did not improve survival in HR CA in 3 trials, MRC IX (3-year OS 45% vs 69%), HOVON50 (3-year OS 17% vs 69%) trials and Total Therapy 2 (TT2) (5-year OS 56% vs 72%).15,18,25,61,62,65  In MRC IX, 3-year OS was worse in patients with HR-CA (45%).66  In HOVON50/GMMG-HD2, first PFS was better with thalidomide treatment, but second PFS was significantly shorter, resulting in a reduced OS.64  In TT2, presence of CA was associated with inferior survival, and a benefit with thalidomide was only observed in a subgroup of patients after 10 years.67 

Consensus statement.

Thalidomide does not abrogate the adverse effect of t(4;14), t(14;16), t(14;20), and del(17) or del(17p) and gain(1q) CA in TE patients. Conclusive data for elderly or frail patients are not available.

Bortezomib.

Several randomized trials have evaluated bortezomib for induction, consolidation, or maintenance treatment in cytogenetic subgroups. In IFM-2005-01, bortezomib/dexamethasone showed a superior response and OS compared with vincristin/doxorubicin/dexamethasone. This combination resulted in a better EFS and OS for patients with t(4;14), but did not improve outcome in del(17p) (4-year OS 50% vs 79%).68  In HOVON65/GMMG-HD4, bortezomib-based induction and maintenance showed an improved outcome for patients with del(17p) (median PFS 26 vs 12 months; 3-year OS 69% vs 17%)). At long-term follow-up, this advantage is still present. However, OS remains inferior to patients without del(17p) (3-year OS 85%). In patients with t(4;14), PFS was not better with bortezomib (25 vs 22 months), whereas OS was improved (3-year OS 69% vs 44%) compared with 85% in patients without t(4;14).29  In the GEM 2005 trial, bortezomib/thalidomide/dexamethasone (VTD) followed by ASCT and maintenance did not improve OS in HR CA (3-year OS 60% vs 88%).63  The GIMEMA group compared VTD with thalidomide/dexamethasone (TD) for induction and consolidation with double ASCT. In the subgroup of 25% with t(4;14), OS was 69% vs 37% in favor of VTD compared with 74% vs 63% without t(4;14) and/or del(17p).17  A meta-analysis of 4 randomized trials showed that the odds of posttransplantation complete response (CR) + near CR in bortezomib-treated patients were similar for HR (del(17p) + t(4;14)) and SR cytogenetics (2.44 vs 1.67, n.s.).16  These trials (1874 patients) showed that bortezomib plus ASCT was superior (PFS 41 vs 33 months) (P < .0001). In patients with HR FISH, this was 32 vs 22 months (P < .0001). PFS benefit was observed in patients with t(4;14) but lacking del(17p) (36 vs 24 months, P = .001) and in del(17p) lacking t(4;14) (27 vs 19 months, P = .014), but not in patients carrying both CA.69  In TT3, OS was significantly shorter in patients with a HR profile (2-year OS 56% vs 88%) compared with SR GEP profile, with the exception of low TP53 expression.70  Addition of bortezomib improved OS compared with TT2 in LR MM.70,71 

Data in NTE patients are scarce. The VISTA trial combined melphalan/prednisone (MP) with MP + bortezomib (VMP). In patients treated with VMP, HR-CA did not influence outcome when compared with SR (OS 56% vs 71%).72  In a Pethema trial comparing VMP with bortezomib/thealidomide/prednisone (VPT) followed by maintenance with bortezomib/thalidomide vs bortezomib/prednisone, HR patients had shorter PFS than SR patients from the first (24 vs 33 months) and second randomization (17 vs 27 months) and shorter survival (3-year OS: 55% vs 77%).73  The GIMEMA group compared VMP with VMP/thalidomide. In this bortezomib-dense treatment, HR vs SR patients had similar PFS.74  The IFM group observed that across bortezomib regimens, no benefit was achieved in HR-CA NTE patients.75 

Consensus statement.

Bortezomib partly overcomes the adverse effect of t(4;14) and possibly del(17p) on CR, PFS, and OS. There is no effect in t(4;14) combined with del(17p) in TE patients. In non-TE patients, VMP may partly restore PFS in HR cytogenetics.

Lenalidomide and pomalidomide.

Experience with lenalidomide in first-line therapy for HR-CA patients is limited. In HR-CA, PFS with lenalidomide was inferior compared with SR patients (18 vs 26 months).76  In the GIMEMA trial comparing high-dose melphalan with MPR, there was a trend for better PFS with lenalidomide maintenance in SR compared with HR-CA (HR 0.38 [0.24-0.62] vs 0.73 [0.37-1.42]). However, there was no effect on OS.77  In the IFM 2005-02 trial, lenalidomide maintenance did not overcome the poor prognosis of t(4;14) (27 vs 24 months) and only partly of del(17p) (29 vs 14 months vs 42 months in all patients).78  Convincing data for continuous lenalidomide in CA groups are lacking.79,80  Subgroup analysis of the FIRST trial in NDMM did not demonstrate a benefit of continuous lenalidomide in HR CA.81  In relapse MM, carfilzomib combined with lenalidomide and dexamethasone (K-RD) was effective across HR and SR patients (23 vs 29 months, P = NS), whereas RD showed less activity (13 vs 19 months, P = .004).82  Data of IFM did not show a benefit of RD in relapse/refractory multiple myeloma (RRMM) with del(13q) or t(4;14).83  In the Eloquent 2 trial for RRMM, elotuzumab with RD (E-RD) improved outcome over RD in del(17p).84  Recent data of the effect of pomalidomide with dexamethasone in patients with RRMM show that this combination does not abrogate overall adverse outcome in HR-CA, whereas OS may improve in del(17p).85  In phase 2 trials, a response benefit of pomalidomide with dexamethasone was shown in patients with del(17p).86 

Consensus statement.

Lenalidomide partly improves the adverse effect of t(4;14) and del(17p) on PFS, but not OS, in TE patients. In non-TE patients, there are no data suggesting that the drug may improve outcome with HR cytogenetics. Pomalidomide with dexamethasone showed promising results in RRMM with del(17p).

Combined proteasome inhibition and lenalidomide.

Bortezomib combined with RD (VRD) in a phase 1/2 trial in 66 patients with NDMM showed 18-month PFS of 100% in 13 patients with del(17p) and/or t(4;14).87  The EVOLUTION trial examined several schedules including VRD in NDMM. One-year PFS was similar in HR-CA (17% of all patients) and SR patients.88  VRD in TE patients with NDMM had similar 3-year PFS (86%) in patients with >60% del(17p) or t(4;14) or del(13q) compared with all patients.89 

Carfilzomib monotherapy did not improve PFS/OS in t(4;14) or del(17p) in RRMM.90  Carfilzomib combined with pomalidomide/dexamethasone had equivalent PFS and OS in HR vs SR RRMM.91  In the Aspire trial, in RRMM, KRD was superior to RD for PFS across cytogenetic risk groups, suggesting that this combination (partly) abrogates the negative impact of t(4;14) and del(17p).82  Similarly, in Tourmaline-MM1, ixazomib combined with RD showed identical PFS in patients with del(17p) or t(4;14) or no CA (20 vs 18 vs 20 m).92  More recently, carfilzomib combined with lenalidomide (KRd) or thalidomide (KTd) and dexamethasone in NDMM showed similar CR rate (>60%) and PFS between HR and SR patients.93,94 

Recently, favorable responses were observed with monoclonal antibodies against CD38 (daratumumab) or SLAMF7 (elotuzumab) combined with RD in RRMM across cytogenetic subgroups.95 

Consensus statement.

Combining a proteasome inhibitor with lenalidomide and dexamethasone greatly reduces the adverse effect of t(4;14) and del(17p) on PFS in NDMM. Carfilzomib with lenalidomide and dexamethasone seems effective in patients with HR cytogenetics. However, with exception of Aspire and Tourmaline, most data were obtained in nonrandomized studies and long-term follow-up has not been reported. The group advises treating NDMM patients with HR cytogenetics with the combination of a proteasome inhibitor with lenalidomide or pomalidomide and dexamethasone.

High-dose therapy and ASCT.

In TE patients with NDMM, the hallmark of first-line treatment is high-dose therapy and ASCT combined with novel agents. This strategy has significantly improved PFS and OS. Therefore, it is difficult to address the role of HDT/ASCT for HR-CA. Few studies have investigated the effect of a second ASCT. In TT3, the addition of bortezomib to double ASCT improved outcome in patients with t(4;14), indicating that the effect of HDT/ASCT varies with induction and consolidation/maintenance.5  Similarly, addition of RVD for consolidation and maintenance after ASCT may improve PFS in HR MM.96,97  A meta-analysis of 4 European trials showed that double ASCT combined with bortezomib-based treatment partially abrogates poor PFS in patients carrying both t(4;14) and del(17p).69 

Consensus statement.

HDT with ASCT is standard therapy for TE patients with NDMM. It contributes to improved outcome across prognostic groups. Double HDT/ASCT combined with bortezomib may improve PFS in patients with t(4;14) or del(17p), and in those with both abnormalities. Although results from stratified randomized trials are not yet available, HDT plus double ASCT is recommended for patients with HR cytogenetics. The results from clinical trials with bortezomib and thalidomide combinations with/without HDT + ASCT in HR cytogenetics are summarized in Tables 3 and 4.

Table 3

Survival of MM patients with high-risk FISH compared with those without high-risk FISH

FISH Np/Na End point Therapy Present Absent Comment Ref 
Conventional therapy       
 t(4;14) 42/290 3-y OS VBMCP 24% 64% E9486 13  
  100/616 3-y OS VAD + ASCT × 2 55% 80% IFM-99 25  
  98/414 3-y OS VAD + ASCT × 1/2 40% 72% IFM-2005 68  
 del17p 37/308 3-y OS VBMCP 32% 68% E9486 13  
  58/474 3-y OS VAD + ASCT × 2 50% 78% IFM-99 25  
  119/393 3-y OS VAD + ASCT × 1 49% 82% IFM-2005 68  
 Unfavorable FISH 141/166 3-y OS CVAD + ASCT × 1 58% 81% MRC IX intensive 62  
  90/125 3-y OS MP 26% 48% MRC IX non-intensive 61  
  98/129 3-y OS Placebo maintenance 69% 72% MRC IX maintenance 39  
  18/111 3-y OS VBMCP/VBAD +Bz × 2 + ASCT × 1 48% 84% GEM2005 <65 63  
Thalidomide        
 t(4;14) 57/181 3-y PFS TD + ASCT × 2 + TD 20% 48% GIMEMA 102  
  26/156 3-y OS VAD + ASCT × 1 + Thal maintenance 44% 79% HOVON65/GMMG-HD4 29  
 del17p 21/161 3-y OS VAD + ASCT × 1 + Thal maintenance 17% 79% HOVON65/GMMG-HD4 29  
 Unfavorable FISH 43/302 5-y OS Thal induction, consolidation, maintenance 56% 72% Total Therapy 2 18  
 152/167 3-y OS CTD + ASCT × 1 59% 82% MRC IX intensive 62  
 96/129 3-y OS CTDa 58% 78% MRX IX non-intensive 61  
 99/126 3-y OS Thalidomide maintenance 45% 76% MRX IX maintenance 39  
 17/110 3-y OS TD + ASCT × 1 56% 86% GEM2005 < 65 63  
Lenalidomide        
 t(4;14) 28/102 Median OS RD in RRMM 18 m 23 m MM-016 103  
  26/158 Median OS RD in RRMM 9 m 15 m IFM 83  
  152/355 Median PFS Lenalidomide maintenance 27 m 42 m IFM-2005 68  
 del17p 12/118 Median OS RD in RRMM 4 m 23 m MM-016 103  
  6.6% Median PFS Lenalidomide maintenance 29 m 42 m IFM-2005 68  
 Unfavorable FISH 16/84 3-y OS RD 77% 86% Mayo Clinic 76  
 21/105 2-y OS RD 76% 91% E4A03 104  
Bortezomib        
 t(4;14) 106/401 4-y OS VD + ASCT × 1 63% 85% IFM-2005 68  
 53/183 3-y PFS VTD + ASCT × 2 + BzTD 65% 61% GIMEMA 102  
 24/148 3-y OS VAD + ASCT × 1 + Bz 66% 82% HOVON65/GMMG-HD4 29  
 del17p 54/453 4-y OS VD + ASCT × 1 50% 79% IFM-2005 68  
  16/158 3-y OS VAD + ASCT × 1 + Bz 69% 82% HOVON65/GMMG-HD4 29  
 Unfavorable FISH 18/112 3-y OS VTD + ASCT × 1 60% 88% GEM2005 <65 63  
 44/188 3-y OS VMP/BzTP, BzT/BzP 55% 73% GEM2005 <65 73  
 28/140 3-y OS VMP 56% 71% VISTA 72  
FISH Np/Na End point Therapy Present Absent Comment Ref 
Conventional therapy       
 t(4;14) 42/290 3-y OS VBMCP 24% 64% E9486 13  
  100/616 3-y OS VAD + ASCT × 2 55% 80% IFM-99 25  
  98/414 3-y OS VAD + ASCT × 1/2 40% 72% IFM-2005 68  
 del17p 37/308 3-y OS VBMCP 32% 68% E9486 13  
  58/474 3-y OS VAD + ASCT × 2 50% 78% IFM-99 25  
  119/393 3-y OS VAD + ASCT × 1 49% 82% IFM-2005 68  
 Unfavorable FISH 141/166 3-y OS CVAD + ASCT × 1 58% 81% MRC IX intensive 62  
  90/125 3-y OS MP 26% 48% MRC IX non-intensive 61  
  98/129 3-y OS Placebo maintenance 69% 72% MRC IX maintenance 39  
  18/111 3-y OS VBMCP/VBAD +Bz × 2 + ASCT × 1 48% 84% GEM2005 <65 63  
Thalidomide        
 t(4;14) 57/181 3-y PFS TD + ASCT × 2 + TD 20% 48% GIMEMA 102  
  26/156 3-y OS VAD + ASCT × 1 + Thal maintenance 44% 79% HOVON65/GMMG-HD4 29  
 del17p 21/161 3-y OS VAD + ASCT × 1 + Thal maintenance 17% 79% HOVON65/GMMG-HD4 29  
 Unfavorable FISH 43/302 5-y OS Thal induction, consolidation, maintenance 56% 72% Total Therapy 2 18  
 152/167 3-y OS CTD + ASCT × 1 59% 82% MRC IX intensive 62  
 96/129 3-y OS CTDa 58% 78% MRX IX non-intensive 61  
 99/126 3-y OS Thalidomide maintenance 45% 76% MRX IX maintenance 39  
 17/110 3-y OS TD + ASCT × 1 56% 86% GEM2005 < 65 63  
Lenalidomide        
 t(4;14) 28/102 Median OS RD in RRMM 18 m 23 m MM-016 103  
  26/158 Median OS RD in RRMM 9 m 15 m IFM 83  
  152/355 Median PFS Lenalidomide maintenance 27 m 42 m IFM-2005 68  
 del17p 12/118 Median OS RD in RRMM 4 m 23 m MM-016 103  
  6.6% Median PFS Lenalidomide maintenance 29 m 42 m IFM-2005 68  
 Unfavorable FISH 16/84 3-y OS RD 77% 86% Mayo Clinic 76  
 21/105 2-y OS RD 76% 91% E4A03 104  
Bortezomib        
 t(4;14) 106/401 4-y OS VD + ASCT × 1 63% 85% IFM-2005 68  
 53/183 3-y PFS VTD + ASCT × 2 + BzTD 65% 61% GIMEMA 102  
 24/148 3-y OS VAD + ASCT × 1 + Bz 66% 82% HOVON65/GMMG-HD4 29  
 del17p 54/453 4-y OS VD + ASCT × 1 50% 79% IFM-2005 68  
  16/158 3-y OS VAD + ASCT × 1 + Bz 69% 82% HOVON65/GMMG-HD4 29  
 Unfavorable FISH 18/112 3-y OS VTD + ASCT × 1 60% 88% GEM2005 <65 63  
 44/188 3-y OS VMP/BzTP, BzT/BzP 55% 73% GEM2005 <65 73  
 28/140 3-y OS VMP 56% 71% VISTA 72  

Adapted from Bergsagel et al.58 

Table 4

Survival of high-risk genetic subgroups in randomized, controlled clinical trials of newly diagnosed MM: effect of treatment modalities and novel drugs

FISH N1/N2 End point Arm 1 Arm 2 Arm 1 (%) Arm 2 (%) Comment Ref 
t(4;14) 26/24 3-y OS PAD/ASCT/thalidomide* VAD/ASCT/bortezomib* 44 66 HOVON65/GMMG- HD4 15  
 98/106 4-y OS VAD VD 32 63* IFM-2005 68  
 21/23 2-y OS Thalidomide* Placebo* 67 87 TT2 18  
 21/29 2-y OS Thalidomide-TT2 Bortezomib TT3 67 97* TT2 vs TT3 70  
Del(17p) 21/16 3-y OS VAD/ASCT/thalidomide PAD/ASCT/bortezomib* 17 69* HOVON65/GMMG-HD4 15  
 119/54 4-y OS VAD V D 36 50 IFM-2005 68  
Nonhyperdiploid 92 3-y OS VTD VMP 53 72* PETHEMA 63  
Unfavorable FISH 152/141 3-y OS CTD VAD-cyclophosphamide 58 56 MRC IX intensive 62  
 96/90 3-y OS CTD Placebo MP 34 26 MRC IX nonintensive 61  
 99/98 3-y OS Thalidomide Placebo 45 69* MRC IX maintenance 39  
FISH N1/N2 End point Arm 1 Arm 2 Arm 1 (%) Arm 2 (%) Comment Ref 
t(4;14) 26/24 3-y OS PAD/ASCT/thalidomide* VAD/ASCT/bortezomib* 44 66 HOVON65/GMMG- HD4 15  
 98/106 4-y OS VAD VD 32 63* IFM-2005 68  
 21/23 2-y OS Thalidomide* Placebo* 67 87 TT2 18  
 21/29 2-y OS Thalidomide-TT2 Bortezomib TT3 67 97* TT2 vs TT3 70  
Del(17p) 21/16 3-y OS VAD/ASCT/thalidomide PAD/ASCT/bortezomib* 17 69* HOVON65/GMMG-HD4 15  
 119/54 4-y OS VAD V D 36 50 IFM-2005 68  
Nonhyperdiploid 92 3-y OS VTD VMP 53 72* PETHEMA 63  
Unfavorable FISH 152/141 3-y OS CTD VAD-cyclophosphamide 58 56 MRC IX intensive 62  
 96/90 3-y OS CTD Placebo MP 34 26 MRC IX nonintensive 61  
 99/98 3-y OS Thalidomide Placebo 45 69* MRC IX maintenance 39  

Adapted from Bergsagel et al.58 

*

Significant better survival outcome.

Allogeneic stem cell transplantation.

Allogeneic SCT has been proposed as a treatment of HR younger patients. Data on CA are scarce and partly based on classic karyotyping. In a trial of 73 NDMM patients, tandem auto-allo-transplantation yielded similar 5-year PFS (24% vs 30%) and OS (50% vs 54%) in patients without t(4;14) or del(17p).98  The EBMT-NMAM2000 study showed better OS in patients treated with ASCT/RIC-allo or ASCT alone: 49% vs 36% at 96 months, respectively (P = .030) Unfortunately, convincing FISH data are lacking.99  A retrospective analysis in 143 patients indicated that patients with del(13q) or t(4;14) or del(17p) or t(11;14) had similar 3-year PFS and OS as patients without abnormality.100  A study of allo-SCT in 101 relapsed MM showed worse 4-year PFS (28 vs 43%) and OS (30 vs 49%) in 16 patients with del(17p), whereas in 16 patients with t(4;14) no impact was observed.101 

Consensus statement.

Allogeneic SCT or tandem auto-allo-SCT may improve PFS in patients with t(4;14) or del(17p). Results are better in an early stage of the disease. The novel treatments may challenge the role of allo-SCT and its use should be restricted to clinical trials.

Concluding remarks and future perspectives

Risk stratification in MM is important to predict survival and to define a treatment strategy. Cytogenetic abnormalities by FISH currently are clinically relevant prognostic factors in MM. The IMWG consensus panel on FISH advises to test for the presence of del(17p), t(4;14), and possibly t(14;16). An extended panel, which may be incorporated in clinical trials, includes t(11;14), t(14;20), gain(1q), del(1p), del(13q), and ploidy status. Bortezomib and lenalidomide may partially abrogate the adverse effect of del(17p). Bortezomib combined with iMIDS may improve outcome in t(4;14). Double HDT/ASCT plus bortezomib may improve outcome in patients with both adverse CA. Application of these risk factors may be a first step toward precision medicine in patients with MM.

Acknowledgments

The following members of the International Myeloma Working Group participated in this study: Kenneth C. Anderson, Dana-Farber Cancer Institute, Boston, MA; Michel Attal, Purpan Hospital, Toulouse, France; Hervé Avet-Loiseau, University of Toulouse, Toulouse, France; Joan Bladé, Hospital Clinic, IDIBAPS, University of Barcelona, Spain; Michele Cavo, University of Bologna, Bologna, Italy; Wee-Joo Chng, National University Health System, Singapore; Jo Caers, Centre Hospitalier Universitaire de Liège, Liège, Belgium; Niels van de Donk, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Dominik Dytfeld, Karol Marcinkowski University of Medical Sciences, Poznan, Poland; Michael O’Dwyer, National University of Ireland, Ireland; Hermann Einsele, Universitätsklinik Würzburg, Würzburg, Germany; Laurent Garderet, Hopital Saint Antoine, Paris, France; Hartmut Goldschmidt, University Hospital Heidelberg and National Center for Tumor diseases Heidelberg, Heidelberg, Germany; Jens Hillengass, University of Heidelberg, Heidelberg, Germany; Shinsuke Ida, Nagoya City University Medical School, Nagoya, Japan; Robert A. Kyle, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Sagar Lonial, Emory University Medical School, Atlanta, GA; Jin Lu, Peoples Hospital, Beijing University, Beijing, China; Marivi Mateos, University of Salamanca, Spain; Amitabha Mazumder, NYU Comprehensive Cancer Center, New York, NY; Philippe Moreau, University Hospital, Nantes, France; Amara Nouel, Hospital Rutz y Paez, Bolivar, Venezuela; Robert Orlowski, MD Anderson Cancer Center, Houston, TX; Antonio Palumbo, University of Torino, Torino, Italy; Anthony Reiman, Saint John Regional Hospital, Saint John, New Brunswick, Canada; Eloísa Riva Serra, Hospital de Clinicas, Montevideo, Uruguay; Javier de la Rubia, Hospital Universitario La Fe, Valencia, Spain; Kenneth R. Romeril, Wellington Hospital, Wellington, New Zealand; Murielle Roussel, University of Toulouse, Toulouse, France; Jesús San Miguel, Clinica Universitaria de Navarra, CIMA, Pamplona, Spain; Orhan Sezer, Memorial Sisli Hastanesi, Istanbul, Turkey; Kazuyuki Shimizu, Tokai Central Hospital, Kakamigahara, Japan; David Siegel, Hackensack University Medical Center, Hackensack, NJ; Pieter Sonneveld, Erasmus MC, Rotterdam, The Netherlands; Evangelos Terpos, University of Athens School of Medicine, Athens, Greece; Saad Usmani, Levine Cancer Institute/Carolinas Healthcare System, Charlotte, NC; Sonja Zweegman, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.

This study was supported by Amgen/Onyx, Celgene, Janssen, Karyopharm, and SkylineDx, and by honoraria from Amgen/Onyx, Celgene, Janssen, and Karyopharm.

Authorship

Contribution: P.S. wrote, revised, and approved the manuscript; and all authors revised and approved the manuscript.

Correspondence: Pieter Sonneveld, Department of Hematology, Rm Na822, Erasmus MC Cancer Institute, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; e-mail: p.sonneveld@erasmusmc.nl.

References

References
1
Palumbo
A
Anderson
K
Multiple myeloma.
N Engl J Med
2011
, vol. 
364
 
11
(pg. 
1046
-
1060
)
2
Rajkumar
SV
Dimopoulos
MA
Palumbo
A
, et al. 
International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma.
Lancet Oncol
2014
, vol. 
15
 
12
(pg. 
e538
-
e548
)
3
Morgan
GJ
Walker
BA
Davies
FE
The genetic architecture of multiple myeloma.
Nat Rev Cancer
2012
, vol. 
12
 
5
(pg. 
335
-
348
)
4
Hervé
AL
Florence
M
Philippe
M
, et al. 
Molecular heterogeneity of multiple myeloma: pathogenesis, prognosis, and therapeutic implications.
J Clin Oncol
2011
, vol. 
29
 
14
(pg. 
1893
-
1897
)
5
Usmani
SZ
Crowley
J
Hoering
A
, et al. 
Improvement in long-term outcomes with successive Total Therapy trials for multiple myeloma: are patients now being cured?
Leukemia
2013
, vol. 
27
 
1
(pg. 
226
-
232
)
6
Ross
FM
Avet-Loiseau
H
Ameye
G
, et al. 
European Myeloma Network
Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders.
Haematologica
2012
, vol. 
97
 
8
(pg. 
1272
-
1277
)
7
Bergsagel
PL
Kuehl
WM
Zhan
F
Sawyer
J
Barlogie
B
Shaughnessy
J
Jr
Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma.
Blood
2005
, vol. 
106
 
1
(pg. 
296
-
303
)
8
Chng
WJ
Chung
TH
Kumar
S
, et al. 
Gene signature combinations improve prognostic stratification of multiple myeloma patients.
Leukemia
2015
9
Munshi
NC
Avet-Loiseau
H
Genomics in multiple myeloma.
Clin Cancer Res
2011
, vol. 
17
 
6
(pg. 
1234
-
1242
)
10
Kuehl
WM
Bergsagel
PL
Multiple myeloma: evolving genetic events and host interactions.
Nat Rev Cancer
2002
, vol. 
2
 
3
(pg. 
175
-
187
)
11
Neben
K
Jauch
A
Bertsch
U
, et al. 
Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation.
Haematologica
2010
, vol. 
95
 
7
(pg. 
1150
-
1157
)
12
Boyd
KD
Ross
FM
Chiecchio
L
, et al. 
NCRI Haematology Oncology Studies Group
A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial.
Leukemia
2012
, vol. 
26
 
2
(pg. 
349
-
355
)
13
Fonseca
R
Blood
E
Rue
M
, et al. 
Clinical and biologic implications of recurrent genomic aberrations in myeloma.
Blood
2003
, vol. 
101
 
11
(pg. 
4569
-
4575
)
14
Gertz
MA
Lacy
MQ
Dispenzieri
A
, et al. 
Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy.
Blood
2005
, vol. 
106
 
8
(pg. 
2837
-
2840
)
15
Sonneveld
P
Schmidt-Wolf
IG
van der Holt
B
, et al. 
Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial.
J Clin Oncol
2012
, vol. 
30
 
24
(pg. 
2946
-
2955
)
16
Sonneveld
P
Goldschmidt
H
Rosiñol
L
, et al. 
Bortezomib-based versus nonbortezomib-based induction treatment before autologous stem-cell transplantation in patients with previously untreated multiple myeloma: a meta-analysis of phase III randomized, controlled trials.
J Clin Oncol
2013
, vol. 
31
 
26
(pg. 
3279
-
3287
)
17
Cavo
M
Tacchetti
P
Patriarca
F
, et al. 
GIMEMA Italian Myeloma Network
Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study.
Lancet
2010
, vol. 
376
 
9758
(pg. 
2075
-
2085
)
18
Barlogie
B
Pineda-Roman
M
van Rhee
F
, et al. 
Thalidomide arm of Total Therapy 2 improves complete remission duration and survival in myeloma patients with metaphase cytogenetic abnormalities.
Blood
2008
, vol. 
112
 
8
(pg. 
3115
-
3121
)
19
Moreau
P
Attal
M
Garban
F
, et al. 
SAKK; IFM Group
Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials.
Leukemia
2007
, vol. 
21
 
9
(pg. 
2020
-
2024
)
20
Shaughnessy
JD
Jr
Zhan
F
Burington
BE
, et al. 
A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1.
Blood
2007
, vol. 
109
 
6
(pg. 
2276
-
2284
)
21
Hebraud
B
Magrangeas
F
Cleynen
A
, et al. 
Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience.
Blood
2015
, vol. 
125
 
13
(pg. 
2095
-
2100
)
22
Narita
T
Inagaki
A
Kobayashi
T
, et al. 
t(14;16)-positive multiple myeloma shows negativity for CD56 expression and unfavorable outcome even in the era of novel drugs.
Blood Cancer J
2015
, vol. 
5
 pg. 
e285
 
23
Avet-Loiseau
H
Malard
F
Campion
L
, et al. 
Intergroupe Francophone du Myélome
Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor?
Blood
2011
, vol. 
117
 
6
(pg. 
2009
-
2011
)
24
Fonseca
R
Blood
EA
Oken
MM
, et al. 
Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients.
Blood
2002
, vol. 
99
 
10
(pg. 
3735
-
3741
)
25
Avet-Loiseau
H
Attal
M
Moreau
P
, et al. 
Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome.
Blood
2007
, vol. 
109
 
8
(pg. 
3489
-
3495
)
26
Pawlyn
C
Melchor
L
Murison
A
, et al. 
Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations.
Blood
2015
, vol. 
125
 
5
(pg. 
831
-
840
)
27
Walker
BA
Leone
PE
Chiecchio
L
, et al. 
A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value.
Blood
2010
, vol. 
116
 
15
(pg. 
e56
-
e65
)
28
Chiecchio
L
Protheroe
RK
Ibrahim
AH
, et al. 
Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma.
Leukemia
2006
, vol. 
20
 
9
(pg. 
1610
-
1617
)
29
Neben
K
Lokhorst
HM
Jauch
A
, et al. 
Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p.
Blood
2012
, vol. 
119
 
4
(pg. 
940
-
948
)
30
Teoh
PJ
Chung
TH
Sebastian
S
, et al. 
p53 haploinsufficiency and functional abnormalities in multiple myeloma.
Leukemia
2014
, vol. 
28
 
10
(pg. 
2066
-
2074
)
31
Zhan
F
Colla
S
Wu
X
, et al. 
CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms.
Blood
2007
, vol. 
109
 
11
(pg. 
4995
-
5001
)
32
Boyd
KD
Ross
FM
Walker
BA
, et al. 
NCRI Haematology Oncology Studies Group
Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival.
Clin Cancer Res
2011
, vol. 
17
 
24
(pg. 
7776
-
7784
)
33
Chang
H
Qi
X
Jiang
A
Xu
W
Young
T
Reece
D
1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma.
Bone Marrow Transplant
2010
, vol. 
45
 
1
(pg. 
117
-
121
)
34
Hebraud
B
Leleu
X
Lauwers-Cances
V
, et al. 
Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients.
Leukemia
2014
, vol. 
28
 
3
(pg. 
675
-
679
)
35
Walker
BA
Boyle
EM
Wardell
CP
, et al. 
Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma.
J Clin Oncol
2015
, vol. 
33
 
33
(pg. 
3911
-
3920
)
36
Billecke
L
Murga Penas
EM
May
AM
, et al. 
Cytogenetics of extramedullary manifestations in multiple myeloma.
Br J Haematol
2013
, vol. 
161
 
1
(pg. 
87
-
94
)
37
López-Anglada
L
Gutiérrez
NC
García
JL
Mateos
MV
Flores
T
San Miguel
JF
P53 deletion may drive the clinical evolution and treatment response in multiple myeloma.
Eur J Haematol
2010
, vol. 
84
 
4
(pg. 
359
-
361
)
38
Avet-Loiseau
H
Li
C
Magrangeas
F
, et al. 
Prognostic significance of copy-number alterations in multiple myeloma.
J Clin Oncol
2009
, vol. 
27
 
27
(pg. 
4585
-
4590
)
39
Morgan
GJ
Gregory
WM
Davies
FE
, et al. 
National Cancer Research Institute Haematological Oncology Clinical Studies Group
The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis.
Blood
2012
, vol. 
119
 
1
(pg. 
7
-
15
)
40
Kumar
S
Fonseca
R
Ketterling
RP
, et al. 
Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics.
Blood
2012
, vol. 
119
 
9
(pg. 
2100
-
2105
)
41
Ludwig
H
Durie
BG
Bolejack
V
, et al. 
Myeloma in patients younger than age 50 years presents with more favorable features and shows better survival: an analysis of 10 549 patients from the International Myeloma Working Group.
Blood
2008
, vol. 
111
 
8
(pg. 
4039
-
4047
)
42
Gay
F
Larocca
A
Wijermans
P
, et al. 
Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients.
Blood
2011
, vol. 
117
 
11
(pg. 
3025
-
3031
)
43
Fonseca
R
Bergsagel
PL
Drach
J
, et al. 
International Myeloma Working Group
International Myeloma Working Group molecular classification of multiple myeloma: spotlight review.
Leukemia
2009
, vol. 
23
 
12
(pg. 
2210
-
2221
)
44
Stewart
AK
Bergsagel
PL
Greipp
PR
, et al. 
A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy.
Leukemia
2007
, vol. 
21
 
3
(pg. 
529
-
534
)
45
Rajkumar
SV
Gahrton
G
Bergsagel
PL
Approach to the treatment of multiple myeloma: a clash of philosophies.
Blood
2011
, vol. 
118
 
12
(pg. 
3205
-
3211
)
46
Gutiérrez
NC
Castellanos
MV
Martín
ML
, et al. 
GEM/PETHEMA Spanish Group
Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis.
Leukemia
2007
, vol. 
21
 
1
(pg. 
143
-
150
)
47
Chng
WJ
Dispenzieri
A
Chim
CS
, et al. 
International Myeloma Working Group
IMWG consensus on risk stratification in multiple myeloma.
Leukemia
2014
, vol. 
28
 
2
(pg. 
269
-
277
)
48
Avet-Loiseau
H
Durie
BG
Cavo
M
, et al. 
International Myeloma Working Group
Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project.
Leukemia
2013
, vol. 
27
 
3
(pg. 
711
-
717
)
49
Moreau
P
Cavo
M
Sonneveld
P
, et al. 
Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related death.
J Clin Oncol
2014
, vol. 
32
 
20
(pg. 
2173
-
2180
)
50
Palumbo
A
Avet-Loiseau
H
Oliva
S
, et al. 
Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group.
J Clin Oncol
2015
, vol. 
33
 
26
(pg. 
2863
-
2869
)
51
Zhan
F
Hardin
J
Kordsmeier
B
, et al. 
Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells.
Blood
2002
, vol. 
99
 
5
(pg. 
1745
-
1757
)
52
Shaughnessy
JD
Jr
Qu
P
Usmani
S
, et al. 
Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3.
Blood
2011
, vol. 
118
 
13
(pg. 
3512
-
3524
)
53
Kuiper
R
Broyl
A
de Knegt
Y
, et al. 
A gene expression signature for high-risk multiple myeloma.
Leukemia
2012
, vol. 
26
 
11
(pg. 
2406
-
2413
)
54
Kuiper
R
van Duin
M
van Vliet
MH
, et al. 
Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System.
Blood
2015
, vol. 
126
 
17
(pg. 
1996
-
2004
)
55
Decaux
O
Lodé
L
Magrangeas
F
, et al. 
Intergroupe Francophone du Myélome
Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myélome.
J Clin Oncol
2008
, vol. 
26
 
29
(pg. 
4798
-
4805
)
56
Amin
SB
Yip
WK
Minvielle
S
, et al. 
Gene expression profile alone is inadequate in predicting complete response in multiple myeloma.
Leukemia
2014
, vol. 
28
 
11
(pg. 
2229
-
2234
)
57
Mikhael
JR
Dingli
D
Roy
V
, et al. 
Mayo Clinic
Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013.
Mayo Clin Proc
2013
, vol. 
88
 
4
(pg. 
360
-
376
)
58
Bergsagel
PL
Mateos
MV
Gutierrez
NC
Rajkumar
SV
San Miguel
JF
Improving overall survival and overcoming adverse prognosis in the treatment of cytogenetically high-risk multiple myeloma.
Blood
2013
, vol. 
121
 
6
(pg. 
884
-
892
)
59
Bianchi
G
Richardson
PG
Anderson
KC
Best treatment strategies in high-risk multiple myeloma: navigating a gray area.
J Clin Oncol
2014
, vol. 
32
 
20
(pg. 
2125
-
2132
)
60
Singhal
S
Mehta
J
Desikan
R
, et al. 
Antitumor activity of thalidomide in refractory multiple myeloma.
N Engl J Med
1999
, vol. 
341
 
21
(pg. 
1565
-
1571
)
61
Morgan
GJ
Davies
FE
Gregory
WM
, et al. 
NCRI Haematological Oncology Study Group
Cyclophosphamide, thalidomide, and dexamethasone (CTD) as initial therapy for patients with multiple myeloma unsuitable for autologous transplantation.
Blood
2011
, vol. 
118
 
5
(pg. 
1231
-
1238
)
62
Morgan
GJ
Davies
FE
Gregory
WM
, et al. 
National Cancer Research Institute Haematological Oncology Clinical Studies Group
Cyclophosphamide, thalidomide, and dexamethasone as induction therapy for newly diagnosed multiple myeloma patients destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial results.
Haematologica
2012
, vol. 
97
 
3
(pg. 
442
-
450
)
63
Rosiñol
L
Oriol
A
Teruel
AI
, et al. 
Programa para el Estudio y la Terapéutica de las Hemopatías Malignas/Grupo Español de Mieloma (PETHEMA/GEM) group
Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study.
Blood
2012
, vol. 
120
 
8
(pg. 
1589
-
1596
)
64
Lokhorst
HM
van der Holt
B
Zweegman
S
, et al. 
Dutch-Belgian Hemato-Oncology Group (HOVON)
A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma.
Blood
2010
, vol. 
115
 
6
(pg. 
1113
-
1120
)
65
Attal
M
Harousseau
JL
Leyvraz
S
, et al. 
Inter-Groupe Francophone du Myélome (IFM)
Maintenance therapy with thalidomide improves survival in patients with multiple myeloma.
Blood
2006
, vol. 
108
 
10
(pg. 
3289
-
3294
)
66
Boyd
KD
Ross
FM
Tapper
WJ
, et al. 
NCRI Haematology Oncology Studies Group
The clinical impact and molecular biology of del(17p) in multiple myeloma treated with conventional or thalidomide-based therapy.
Genes Chromosomes Cancer
2011
, vol. 
50
 
10
(pg. 
765
-
774
)
67
Barlogie
B
Anaissie
E
van Rhee
F
, et al. 
The Arkansas approach to therapy of patients with multiple myeloma.
Best Pract Res Clin Haematol
2007
, vol. 
20
 
4
(pg. 
761
-
781
)
68
Avet-Loiseau
H
Leleu
X
Roussel
M
, et al. 
Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p).
J Clin Oncol
2010
, vol. 
28
 
30
(pg. 
4630
-
4634
)
69
Cavo
M
Salwender
H
Rosinol
L
, et al. 
Double vs single autologous stem cell transplantation after bortezomib-based induction regimens for multiple myeloma: an integrated analysis of patient-level data from phase European III studies [abstract].
Blood
2013
, vol. 
122
 
21
 
Abstract 767
70
Nair
B
van Rhee
F
Shaughnessy
JD
Jr
, et al. 
Superior results of Total Therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance.
Blood
2010
, vol. 
115
 
21
(pg. 
4168
-
4173
)
71
Pineda-Roman
M
Zangari
M
Haessler
J
, et al. 
Sustained complete remissions in multiple myeloma linked to bortezomib in total therapy 3: comparison with total therapy 2.
Br J Haematol
2008
, vol. 
140
 
6
(pg. 
625
-
634
)
72
San Miguel
JF
Schlag
R
Khuageva
NK
, et al. 
VISTA Trial Investigators
Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma.
N Engl J Med
2008
, vol. 
359
 
9
(pg. 
906
-
917
)
73
Mateos
MV
Gutiérrez
NC
Martín-Ramos
ML
, et al. 
Outcome according to cytogenetic abnormalities and DNA ploidy in myeloma patients receiving short induction with weekly bortezomib followed by maintenance.
Blood
2011
, vol. 
118
 
17
(pg. 
4547
-
4553
)
74
Palumbo
APBS
Rossi
D
Berretta
S
, et al. 
A phase III study of VMPT versus VMP in newly diagnosed elderly myeloma patients.
J Clin Oncol
2009
, vol. 
27
 pg. 
8515a
 
75
Avet-Loiseau
H
Hulin
C
Campion
L
, et al. 
Chromosomal abnormalities are major prognostic factors in elderly patients with multiple myeloma: the intergroupe francophone du myélome experience.
J Clin Oncol
2013
, vol. 
31
 
22
(pg. 
2806
-
2809
)
76
Kapoor
P
Kumar
S
Fonseca
R
, et al. 
Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone.
Blood
2009
, vol. 
114
 
3
(pg. 
518
-
521
)
77
Palumbo
A
Cavallo
F
Gay
F
, et al. 
Autologous transplantation and maintenance therapy in multiple myeloma.
N Engl J Med
2014
, vol. 
371
 
10
(pg. 
895
-
905
)
78
Attal
M
Lauwers-Cances
V
Marit
G
, et al. 
IFM Investigators
Lenalidomide maintenance after stem-cell transplantation for multiple myeloma.
N Engl J Med
2012
, vol. 
366
 
19
(pg. 
1782
-
1791
)
79
Palumbo
A
Hajek
R
Delforge
M
, et al. 
MM-015 Investigators
Continuous lenalidomide treatment for newly diagnosed multiple myeloma.
N Engl J Med
2012
, vol. 
366
 
19
(pg. 
1759
-
1769
)
80
McCarthy
PL
Owzar
K
Hofmeister
CC
, et al. 
Lenalidomide after stem-cell transplantation for multiple myeloma.
N Engl J Med
2012
, vol. 
366
 
19
(pg. 
1770
-
1781
)
81
Benboubker
L
Dimopoulos
MA
Dispenzieri
A
, et al. 
FIRST Trial Team
Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma.
N Engl J Med
2014
, vol. 
371
 
10
(pg. 
906
-
917
)
82
Stewart
AK
Rajkumar
SV
Dimopoulos
MA
, et al. 
ASPIRE Investigators
Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma.
N Engl J Med
2015
, vol. 
372
 
2
(pg. 
142
-
152
)
83
Avet-Loiseau
H
Soulier
J
Fermand
JP
, et al. 
IFM and MAG groups
Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexaméthasone.
Leukemia
2010
, vol. 
24
 
3
(pg. 
623
-
628
)
84
Lonial
S
Dimopoulos
M
Palumbo
A
, et al. 
ELOQUENT-2 Investigators
Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma.
N Engl J Med
2015
, vol. 
373
 
7
(pg. 
621
-
631
)
85
Dimopoulos
MA
Weisel
KC
Song
KW
, et al. 
Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone.
Haematologica
2015
, vol. 
100
 
10
(pg. 
1327
-
1333
)
86
Leleu
X
Karlin
L
Macro
M
, et al. 
Intergroupe Francophone du Myélome (IFM)
Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results.
Blood
2015
, vol. 
125
 
9
(pg. 
1411
-
1417
)
87
Richardson
PG
Weller
E
Lonial
S
, et al. 
Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma.
Blood
2010
, vol. 
116
 
5
(pg. 
679
-
686
)
88
Kumar
S
Flinn
I
Richardson
PG
, et al. 
Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma.
Blood
2012
, vol. 
119
 
19
(pg. 
4375
-
4382
)
89
Roussel
M
Lauwers-Cances
V
Robillard
N
, et al. 
Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myélome.
J Clin Oncol
2014
, vol. 
32
 
25
(pg. 
2712
-
2717
)
90
Jakubowiak
AJ
Siegel
DS
Martin
T
, et al. 
Treatment outcomes in patients with relapsed and refractory multiple myeloma and high-risk cytogenetics receiving single-agent carfilzomib in the PX-171-003-A1 study.
Leukemia
2013
, vol. 
27
 
12
(pg. 
2351
-
2356
)
91
Shah
JJ
Stadtmauer
EA
Abonour
R
, et al. 
Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma.
Blood
2015
, vol. 
126
 
20
(pg. 
2284
-
2290
)
92
Moreau
P
Masszi
T
Grzasko
N
, et al. 
Ixazomib, an Investigational Oral Proteasome Inhibitor (PI), in Combination with Lenalidomide and Dexamethasone (IRd), Significantly Extends Progression-Free Survival (PFS) for Patients (Pts) with Relapsed and/or Refractory Multiple Myeloma (RRMM): The Phase 3 Tourmaline-MM1 Study (NCT01564537) [abstract].
Blood
2015
, vol. 
126
 
23
 
Abstract 727
93
Sonneveld
P
Asselbergs
E
Zweegman
S
, et al. 
Phase 2 study of carfilzomib, thalidomide, and dexamethasone as induction/consolidation therapy for newly diagnosed multiple myeloma.
Blood
2015
, vol. 
125
 
3
(pg. 
449
-
456
)
94
Jakubowiak
AJ
Dytfeld
D
Griffith
KA
, et al. 
A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma.
Blood
2012
, vol. 
120
 
9
(pg. 
1801
-
1809
)
95
van de Donk
NW
Moreau
P
Plesner
T
, et al. 
Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.
Blood
2016
, vol. 
127
 
6
(pg. 
681
-
695
)
96
Nooka
AK
Kastritis
E
Dimopoulos
MA
Lonial
S
Treatment options for relapsed and refractory multiple myeloma.
Blood
2015
, vol. 
125
 
20
(pg. 
3085
-
3099
)
97
Nooka
AK
Kaufman
JL
Muppidi
S
, et al. 
Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients.
Leukemia
2014
, vol. 
28
 
3
(pg. 
690
-
693
)
98
Kröger
N
Badbaran
A
Zabelina
T
, et al. 
Impact of high-risk cytogenetics and achievement of molecular remission on long-term freedom from disease after autologous-allogeneic tandem transplantation in patients with multiple myeloma.
Biol Blood Marrow Transplant
2013
, vol. 
19
 
3
(pg. 
398
-
404
)
99
Gahrton
G
Iacobelli
S
Björkstrand
B
, et al. 
EBMT Chronic Malignancies Working Party Plasma Cell Disorders Subcommittee
Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: long-term results of the EBMT-NMAM2000 study.
Blood
2013
, vol. 
121
 
25
(pg. 
5055
-
5063
)
100
Roos-Weil
D
Moreau
P
Avet-Loiseau
H
, et al. 
Société Française de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC)
Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: a report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire.
Haematologica
2011
, vol. 
96
 
10
(pg. 
1504
-
1511
)
101
Schilling
G
Hansen
T
Shimoni
A
, et al. 
Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma.
Leukemia
2008
, vol. 
22
 
6
(pg. 
1250
-
1255
)
102
Cavo
M
Pantani
L
Petrucci
MT
, et al. 
GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto) Italian Myeloma Network
Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma.
Blood
2012
, vol. 
120
 
1
(pg. 
9
-
19
)
103
Reece
D
Song
KW
Fu
T
, et al. 
Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13.
Blood
2009
, vol. 
114
 
3
(pg. 
522
-
525
)
104
Jacobus
SJ
Kumar
S
Uno
H
, et al. 
Impact of high-risk classification by FISH: an eastern cooperative oncology group (ECOG) study E4A03.
Br J Haematol
2011
, vol. 
155
 
3
(pg. 
340
-
348
)