Juvenile and chronic myelomonocytic leukemias (JMML and CMML) are aggressive myeloid malignancies categorized as myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN). Chemotherapy has little benefit for MDS/MPN patients, and new therapies are needed. We have used mouse models investigate the potential of signal transduction inhibitors in MDS/MPN, as JMML and CMML are associated with mutations in NRAS, KRAS, PTPN11, CBL, or NF1 that activate Ras signaling. Conditional Mx1-Cre, KrasLSL-D12 (designated KrasD12) mice develop an aggressive and fully penetrant MDS/MPN characterized by leukocytosis, splenomegaly, anemia, and death by 10-16 weeks of age. Mx1-Cre, Nf1flox/- mice (hereafter Nf1Δ/-) undergo conditional loss of Nf1. These mice also develop MDS/MPN, but the disease is more indolent. We and others have investigated inhibition of effector networks downstream of Ras, such as the Raf/MEK/ERK (MAPK) and phosphotidylinositol-3 kinase (PI3K)/Akt pathways. We previously showed that the MEK inhibitor PD0325901 induced sustained hematologic improvement in both KrasD12 and Nf1Δ/- mice. We also have reported that the class I PI3K inhibitor GDC-0941 improves hematologic function and prolongs survival in KrasD12 mice. However, GDC-0941 and other PI3K inhibitors attenuate both PI3K/Akt and Raf/MEK/ERK pathways due to effects of PI3K upstream of Ras. Therefore, the benefit from GDC-0941 could have been due to its modulation of Raf/MEK/ERK signaling. Here, we specifically test the importance of Akt signaling in MDS/MPN in KrasD12 and Nf1 mouse models using the allosteric inhibitor MK-2206. This compound binds to the interface of the PH and kinase domains of Akt1, Akt2, and Akt3, and does not inhibit any of 250 other kinases at 1 µM. MK-2206 induced substantial improvement in both KrasD12 and Nf1Δ/- mice. Mice treated with MK-2206 had pronounced reduction in leukocytosis, reticulocytosis and splenomegaly, increased hemoglobin concentration, and prolonged survival. MK-2206 had no hematologic effects in control WT mice, indicating some selectivity against aberrant hematopoiesis. Importantly, MK-2206 inhibited Akt but not Raf/MEK/ERK or Jak/STAT signaling. This demonstrates that canonical PI3K/Akt signaling plays an important role in Ras-driven MDS/MPN. Furthermore, combined inhibition of MEK and Akt with PD0325901+MK-2206 yielded a greater improvement in splenomegaly than either agent alone in both KrasD12 and Nf1Δ/- models. Akt has multiple effectors relevant to hematopoiesis and leukemia. Of these, mTOR is of particular interest for targeted cancer therapy. Therefore, we tested the response of KrasD12 mice to rapamycin, a partial inhibitor of mTOR with preferential activity against the mTORC1 complex. KrasD12 mice demonstrated variable responses to rapamycin, with approximately half undergoing a complete and durable hematologic response and the remainder having no response. Together, these studies further implicate PI3K/Akt signaling as a pathogenic effector downstream of Ras in MDS/MPN and support the idea that inhibitors targeting this pathway may have a role in treatment of JMML or CMML.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.