Abstract

Class Switch Recombination (CSR) involves the introduction of double stranded breaks (DSBs) at the switch regions of the immunoglulin heavy chain (Igh) locus by the enzyme Activation Cytidine Deaminse (AID). AID can also act as a general mutator targeting other loci in the genome which can then either be repaired faithfully or in an error-prone fashion introducing mutations and potentially initiating B cell lymphoma. The factors contributing to the choice of repair pathway are not fully understood. Here we tested the hypothesis that repair pathway choice is influenced by differential accessibility and expression levels of target loci across cell cycle. More specifically in the context of CSR we tested whether differential regulation of gene accessibility across cell cycle is an important determinant for AID binding and subsequent repair pathway choice as different repair pathways predominate at different stages of cell cycle. Using 3D-FISH in conjunction with Immunofluorescence we observed that AID target genes that are faithfully repaired are more accessible (found in euchromatic regions) in the G2 phase of the cell cycle then genes that are frequently mutated. In contrast, those genes which are repaired in an error prone fashion are more accessible in the G1 phase of cell cycle. Since Homologous Recombination mediated repair (HR), which is a faithful repair mechanism, occurs in G2 we speculate that accessibility of these genes at this stage of cell cycle facilitates action by this repair pathway. Conversely, genes that are more accessible during the G1 phase of cell cycle will be repaired by the non-homologous end joining (NHEJ) repair pathway and therefore are more likely to be mutated. Thus, HR could be the pathway by which faithful repair is accomplished and use of the NHEJ pathway on the other hand could contribute to the introduction of dangerous DNA mutations that might lead to B cell transformation and cancer. To connect differences in accessibility with repair pathway usage, we used a mouse model carrying a hypomorphic mutation in BRCA2, a protein involved in HR. This is the first mouse model impaired in HR that eludes embryonic lethality and allows inspection of the role of this pathway in maintaining genomic stability in splenocytes undergoing CSR. Our preliminary investigations indicate that in Brca2 mutant B cells not only is the integrity of fathfully repaired loci compromised, but the Igh locus is also damaged. Taken together these results support our hypothesis and further indicate that the HR pathway is involved in repairing Igh. Given that approximately 95% of lymphomas are of B cell origin and many of these are associated with AID mediated breaks, it is crucial for us to understand the factors that influence targeting and repair.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.