The phosphatase of regenerating liver family of phosphatases, consisting of PRL1, PRL2 and PRL3, represents an intriguing group of proteins implicated in cell proliferation and tumorigenesis. However, the role of PRLs in normal and malignant hematopoiesis is largely unknown. While SCF/KIT signaling plays an important role in hematopoietic stem and progenitor cell (HSPC) maintenance, how SCF/KIT signaling is regulated in HSPCs remains poorly understood. We here report that PRL2 regulates HSPC maintenance through regulating SCF/KIT signaling. To define the role of PRL2 in hematopoiesis, we analyzed the hematopoietic stem cell (HSC) behavior in Prl2 deficient mice generated by our group. Prl2 deficiency results in ineffective hematopoiesis and impairs the long-term repopulating ability of HSCs. In addition, Prl2 null HSPCs are less proliferative and show decreased colony formation in response to SCF stimulation. Furthermore, Prl2 null HSPCs show reduced activation of the PI3K/AKT and ERK signaling in steady state and following SCF stimulation. Importantly, we found that PRL2 associates with KIT and the ability of PRL2 to enhance SCF signaling depends on its enzymatic activity, demonstrating that PRL2 mediates SCF/KIT signaling in HSPCs. Thus, PRL2 plays a critical role in hematopoietic stem and progenitor cell maintenance through regulating SCF/KIT signaling. Furthermore, loss of Prl2 decreased the ability of oncogenic KITD814V mutant in promoting hematopoietic progenitor cell proliferation and in activation of signaling pathways. We also checked the expression of PRL2 proteins in human AML cell lines and found increased level of PRL2 proteins in some acute myeloid leukemia (AML) cells compared with normal human bone marrow cells, indicating that PRL2 may play a pathological role in AML. Our results suggest that the PRL2 phosphatase may be a druggable target in myeloproliferative disease (MPD) and acute myeloid leukemia (AML) with oncogenic KIT mutations.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.