Abstract

Myeloproliferative neoplasms (MPNs) are a phenotypically diverse group of pre-leukemic diseases characterized by overproduction of one or more of the myeloid cell lineages. Gain-of -function mutations in the Janus tyrosine kinase 2 (JAK2) are major determinants in MPNs, These include the V617F mutation and mutations in exon 12. Interestingly, MPN phenotype in patients with exon 12 mutations is distinct from that of patients with the V617F mutation. Mechanisms underlying the phenotypic differences are not well understood.

We performed an unbiased screen for residues essential for JAK2 auto-inhibition, and identified a panel of novel gain-of-function mutations. Interestingly, three of them with similar kinase activities in vitro elicited distinctive hematopoietic abnormalities in mice. Specifically, JAK2(K539I) results primarily in erythrocytosis, JAK2(N622I) predominantly granulocytosis, and JAK2(V617F) in both. These phenotypes are consistent with clinical data showing that patients with the V617F mutation exhibit erythrocytosis and granulocytosis, whereas those with mutations in exon 12 (where K539 resides) exhibit erythrocytosis only. To determine the mechanisms underlying the phenotypic differences by different JAK2 mutants, we characterized hematopoietic progenitors and precursor subsets in these mice for their proliferation, apoptosis and differentiation. Quantification of the hematopoietic stem and progenitor population showed an increased percentage of granulocyte-monocyte progenitors (GMP) and skewing of differentiation towards the granulocytic lineage in JAK2(V617F) and JAK2(N622I) mice compared to JAK2(K539I) or wild-type JAK2 mice. Because no difference was observed in the proliferation or apoptosis of bone marrow progenitors from JAK2 mutant mice, differentiation of the common myeloid progenitors (CMP) was likely skewed towards GMP by JAK2(V617F) and JAK2(N622I). Consistent with this hypothesis, similar results were observed in colony forming assays from sorted CMP populations. In the spleen, a decrease in GMP apoptosis and an increase in apoptosis of the megakaryocyte-erythrocyte progenitors (MEP) also contributed to the skewing towards the granulocytic lineage in JAK2(N622I) mice. Similar to MPN patients, mice expressing JAK2 mutants exhibited splenomegaly. We found that JAK2 mutants caused redistribution of hematopoietic stem and progenitors from the bone marrow to spleen. As a result, more differentiated precursors were expanded in the spleens of JAK2 mutants mice compared to mice expressing wild-type JAK2. Consistent with their phenotypes, the percentage of Annexin V7AADerythroblasts in JAK2(K539I) and JAK2(V617F) mice was significantly less than in JAK2(N622I) or wild-type JAK2 mice. On the other hand, both proliferation and apoptosis contribute to the differential degrees of granulocytosis among mice expressing different JAK2 mutants. In line with the different effects elicited by different JAK2 mutants in progenitor and precursor cells, signal transduction pathways were differentially activated downstream of different JAK2 mutants.

In summary, our results showed that JAK2 mutants differentially skew differentiation in early stem and progenitor compartments, and also regulate apoptosis and proliferation of distinct precursor subsets to cause erythrocytosis or granulocytosis in mice. These results provide the mechanistic basis for the phenotypic diversity observed in MPNs with different JAK2 mutants.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.