Activating mutations in the receptor tyrosine kinase FLT3 occur in roughly 30% of acute myeloid leukemia (AML) patients (pts), implicating FLT3 as a potential target for kinase inhibitor therapy. The multi-targeted kinase inhibitor midostaurin (PKC412) shows potent activity against FLT3 as a single agent but also in combination with intensive chemotherapy. Besides its mere presence, the allelic ratio as well as ITD insertion site within the FLT3 gene had been reported as prognostic factors in FLT3-ITD positive AML. Furthermore, pharmacokinetic analyses revealed clinically important interactions between potent CYP3A4 inhibitors, such as azoles, and midostaurin.


To evaluate the pharmacodynamic activity of midostaurin measured as inhibition of the degree of phosphorylated FLT3 (pFLT3) in correlation to co-medication and outcome data.


The study includes intensively treated adults (age 18-70 years) with newly diagnosed FLT3-ITD positive AML enrolled in the ongoing single-arm phase-II AMLSG 16-10 trial (NCT: NCT01477606). Pts with acute promyelocytic leukemia are not eligible. The presence of FLT3-ITD is analyzed by Genescan-based fragment-length analysis (allelic ratio >0.05 required to be FLT3-ITD positive). Induction therapy consists of daunorubicin (60 mg/m², d1-3) and cytarabine (200 mg/m², continuously, d1-7); midostaurin 50 mg twice daily is applied from day 8 onwards until 48h before start of the next treatment cycle. For consolidation therapy, pts proceed to allogeneic hematopoietic stem cell transplantation (HSCT) as first priority; if allogeneic HSCT is not possible pts receive three cycles of age-adapted high-dose cytarabine in combination with midostaurin from day 6 onwards. In all pts maintenance therapy for one year is intended. A total sample size of n=142 is planned to show an improvement in event-free survival from 25% after 2 years to 37.5%. Plasma inhibitory activity assay (PIA) for pFLT3 is performed as previously described (Levis MJ, et al. Blood 2006; 108:3477-83). For PIA, measured time points include day 15 of induction therapy, the end of each treatment cycle and every three months during maintenance therapy.


To date, 72 pts (median age, 54.5 years; range, 29-69 years) have been included and PIA was performed so far in 37 pts during induction therapy. Median pFLT3 inhibition after one week of midostaurin intake measured on day 15 of cycle 1 (C1D15) was 57.5% (range, 14.2-93.7%) with 2 of 31 pts showing inhibition >85%. At the end of the first induction cycle (C1end), median inhibition was 60.3% (range, 0-99.8%); here, 6 of 37 pts had an inhibition >85%. Co-medication with azoles was present in 7 of 23 pts at C1D15 and 13 of 28 pts at C1end. There was no significant difference in pFLT3 inhibition either on C1D15 (p=0.79) or at C1end (p=0.70) between pts on (median pFLT3 inhibition: 52.5%) or off (median pFLT3 inhibition 57.5%) azoles. Response data were available in 56 pts: complete remission (CR) was achieved in 78.5%; rates of early death and refractory disease (RD) were 9% and 12.5%, respectively. In first analyses, there was no difference in pFLT3 inhibition in pts achieving CR (n=30) as compared to those with RD (n=3; p=0.99). In contrast to our previously published data from three historical trials without a FLT3 inhibitor which showed that high allelic ratio was associated with low CR rates (Kayser S, et al. Blood 2009;114:2386-92), in the current trial CR rates remained high (81.5%) despite of a high allelic ratio above the median (>0.58). In addition, we did not see a negative prognostic impact of ITD insertion site within the tyrosine kinase domain of the FLT3 gene (p=0.99). Analyses are currently ongoing, measurement of FLT3 ligand levels and evaluation of pharmacokinetics of midostaurin are also intended.


The addition of 50 mg midostaurin twice daily to intensive induction therapy resulted in a moderate pFLT3 inhibition during induction therapy. Nonetheless, CR rates are promising, especially in pts with unfavorable FLT3-ITD characteristics. Concomitant azoles do not appear to significantly influence pFLT3 inhibitory activity of midostaurin.


Levis:Ambit Biosciences: Consultancy. Schlenk:Ambit: Honoraria; Chugai: Research Funding; Novartis: Research Funding; Pfizer: Research Funding; Amgen: Research Funding.

Author notes


Asterisk with author names denotes non-ASH members.