Hematopoietic stem cells (HSCs) play an essential role in the long-term maintenance of hematopoiesis. Various intracellular signaling proteins, transcription factors and extracellular matrix proteins contribute to the maintenance and function of HSCs. Jak2, a member of the Janus family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines. It has been shown that germ-line deletion of Jak2 results in embryonic lethality whereas post-natal or adult stage deletion of Jak2 results in anemia and thrombocytopenia in mice. However, the role of Jak2 in the maintenance and function of adult HSCs has remained elusive. Understanding the normal function of Jak2 in adult HSC/progenitors is of considerable significance since mutations in Jak2 have been associated with several myeloproliferative neoplasms (MPNs), and most patients treated with Jak2 inhibitors exhibit significant hematopoietic toxicities.

To assess the role of Jak2 in adult HSCs, we have utilized a conditional Jak2 knock-out (Jak2 floxed) allele and an inducible MxCre line that can efficiently express Cre recombinase in adult HSC/progenitors after injections with polyinosine-polycytosine (pI-pC). We have found that deletion of Jak2 in adult mice results in pancytopenia, bone marrow aplasia and 100% lethality within 25 to 42 days after pI-pC induction. Analysis of the HSC/progenitor compartments revealed that Jak2-deficiency causes marked decrease in long-term HSCs, short-term HSCs, multipotent progenitors and early progenitors of all hematopoietic lineages, indicating a defect at the earliest stage of adult hematopoietic development. We have found that deletion of Jak2 leads to increased HSC cell cycle entry, suggesting that Jak2-deficiency results in loss of quiescence in HSCs. Jak2-deficiency also resulted in significant apoptosis in HSCs. Furthermore Jak2-deficient bone marrow cells were severely defective in reconstituting hematopoiesis in lethally-irradiated recipient animals. Competitive repopulations experiments also show that Jak2 is essential for HSC functional activity. We also have confirmed that the requirement for Jak2 in HSCs is cell-autonomous.

To gain insight into the mechanism by which Jak2 controls HSC maintenance and function, we have performed phospho flow analysis on HSC-enriched LSK (lin-Sca-1+c-kit+) cells. TPO and SCF-evoked Akt and Erk activation was significantly reduced in Jak2-deficient LSK compared with control LSK. Stat5 phosphorylation in response to TPO was also completely inhibited in Jak2-deficient LSK cells. In addition, we observed significantly increased intracellular reactive oxygen species (ROS) levels and enhanced activation of p38 MAPK in Jak2-deficient LSK cells, consistent with the loss of quiescence observed in Jak2-deficient HSCs. Treatment with ROS scavenger N-acetyl cysteine partially rescued the defects in Jak2-deficient HSCs in reconstituting hematopoiesis in lethally irradiated recipient animals. Gene expression analysis revealed significant downregulation of HSC-specific gene sets in Jak2-deficient LSK cells. Taken together, our data strongly suggest that Jak2 plays a critical role in the maintenance of quiescence, survival and self-renewal of adult HSCs.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution