Abstract

Additional chromosomal abnormalities (ACAs) in Philadelphia-positive cells have been reported in ∼ 5% of patients with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP). Few studies addressing the prognostic significance of baseline ACAs in patients treated with imatinib have been published previously. The European LeukemiaNet recommendations suggest that the presence of ACAs at diagnosis is a “warning” for patients in early CP, but there is not much information about their outcome after therapy with tyrosine kinase inhibitors. To investigate the role of ACAs in early CP CML patients treated with imatinib mesylate, we performed an analysis in a large series of 559 patients enrolled in 3 prospective trials of the Gruppo Italiano Malattie Ematologiche dell'Adulto Working Party on CML: 378 patients were evaluable and ACAs occurred in 21 patients (5.6%). The overall cytogenetic and molecular response rates were significantly lower and the time to response was significantly longer in patients with ACAs. The long-term outcome of patients with ACAs was inferior, but the differences were not significant. The prognostic significance of each specific cytogenetic abnormality was not assessable. Therefore, we confirm that ACAs constitute an adverse prognostic factor in CML patients treated with imatinib as frontline therapy. This study was registered with clinicaltrials.gov as NCT00514488 and NCT00510926.

Introduction

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the Philadelphia (Ph) chromosome, produced by the reciprocal translocation t(9;22)(q34;q11).1,2  This translocation leads to the generation of a chimeric gene that results from the fusion of the ABL gene on chromosome 9 with the BCR gene on chromosome 22. The new leukemia-specific fusion gene encodes a constitutionally activated protein tyrosine kinases (PTKs) of different molecular weights (p185/190, p210, and p230). The oncogenic PTK, located in the cytoplasm, is responsible of the leukemic phenotype, through the constitutive activation of multiple signaling pathways.3  At diagnosis, in most of cases the classic t(9;22)(q34;q11) or its variant occur as the sole abnormality; additional chromosomal abnormalities in Ph+ cells (ACAs) may appear in ∼ 5% of cases, according to several series.4–6  The clinical impact of these changes may be different depending on the treatment.

Almost 10 years ago, the CML therapy was radically changed by the introduction of imatinib mesylate, a break point cluster-Abelson (BCR-ABL)–targeting tyrosine kinase inhibitor (TKI).7–10  Despite the efficacy of imatinib in chronic phase (CP), treatment failure or suboptimal response have been reported.11,12 

The appearance of ACAs during treatment is commonly known as clonal evolution (CE) and seems to play an important role in imatinib mesylate resistance8 ; the emergence of ACAs during the treatment is considered a poor prognostic feature. The World Health Organization classification suggests that those patients showing ACAs emerging during treatment should be considered in accelerated phase (AP).13  The European LeukemiaNet recommendations9,14  suggest that the presence of ACAs at diagnosis may represent a “warning” feature, requiring careful monitoring of the patient; however, the level of evidence at that time was low because few studies addressing the prognostic meaning of ACAs at diagnosis, before starting imatinib treatment, have been published. Conversely, ACAs emerging during the course of treatment are considered a failure.

We report an analysis of Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA) CML Working Party (WP), aiming to clarify the impact of baseline ACAs on the response to the therapy and on the outcome in newly diagnosed CML patients in early CP, treated with imatinib as first-line therapy.

Methods

Patients

Patients (559) with previously untreated Ph and BCR-ABL–positive CML in early CP were enrolled in 3 concurrent studies, promoted by GIMEMA CML WP and opened to enrollment in 2004: CML/021 (NCT00514488), a phase 2 trial exploring imatinib 800 mg in intermediate Sokal risk CP CML; CML/022 (NCT00510926), a phase 3 trial comparing imatinib 400 versus 800 mg in high Sokal risk CP CML; and CML/023, an observational trial of imatinib 400 mg in CP CML. The studies were approved by the Internal Review Board of all participating institutions and performed according to Good Clinical Practices and the Declaration of Helsinki.

Treatment monitoring and definition of response

Blood count and serum chemistry were performed at enrollment, monthly until the 12th month of treatment and every 3 months thereafter. A complete hematologic response (CHR) was defined as a white blood cell count of < 10 × 109/L, a platelet count of < 450 × 109/L, no immature cells (blasts, promyelocytes, and myelocytes) in the peripheral blood, and the disappearance of all signs and symptoms related to leukemia (including palpable splenomegaly).

All these study protocols required chromosome banding analysis and fluorescence in situ hybridization (FISH) performed on bone marrow cells at baseline, after 6 and 12 months of treatment, and every 6 months thereafter or in case of failure or disease progression. Cytogenetic response was established on at least 20 evaluable metaphases15 ; if < 20 metaphases were scored, FISH analysis was considered to confirm a complete cytogenetic response (CCgR) when the rate of BCR-ABL–positive nuclei was < 1%.16 

Real-time quantitative PCR was performed on peripheral blood and bone marrow samples at baseline and after 3, 6, and 12 months and on peripheral blood every 6 months thereafter. The molecular monitoring was based on peripheral blood samples, and the molecular response was defined as major (MMolR) if the BCR-ABL/ABL ratio was < 0.10% on the International Scale.17–19 

Cytogenetics: chromosome banding analysis and FISH analysis

The GIMEMA CML WP has established a network of cytogenetic laboratories covering all the country. Fourteen of these laboratories performed cytogenetic studies for more than 1 clinical center (reference laboratories), and 24 laboratories performed cytogenetic studies for their respective clinical center (supplemental Table 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article). Chromosome banding analysis was performed on bone marrow cells after short-term culture (24 hours, 48 hours, or both) according to the International System for Human Cytogenetic Nomenclature.20  A central review was not performed. At least 20 metaphases were required.

The most frequent chromosomal abnormalities are defined as “major route” abnormalities, and they include trisomy 8, duplication of Ph chromosome, isochromosome 17q, and trisomy 19.21 

FISH was performed on bone marrow cells prepared according to cytogenetic techniques and by using DNA probes that hybridize at the BCR and ABL regions.16–22  FISH analysis was performed on at least 200 cells.

Molecular studies

All samples and tests were centralized in Bologna, Italy. RNA extraction, RT-PCR, and real-time quantitative PCR were performed according to European recommendations, as described previously.23–25  Real-time quantitative PCR was performed on an ABI PRISM 7900 sequence detector (Applied Biosystems).19  ABL was used as the housekeeping gene to correct differences in RNA quality, RT efficacy, or both. The results are expressed as ratio between BCR-ABL and ABL copies' percentages. The BCR-ABL/ABL ratios percentages were further multiplied by the conversion factor of the Bologna laboratory to set the results on an international scale.17–19 

Definition of progression, failure, and events

The progression to advanced phases was identified by at least 1 of the following criteria: peripheral blood myeloblast ≥ 10%; peripheral blood myeloblasts and promyelocytes ≥ 30%; and any extramedullary blast involvement, excluding spleen and liver. All the cases that did not meet any of the above-mentioned criteria were defined as CP.

According to the international recommendations, failures were defined as follows: no CHR at 3 months, no cytogenetic response (CgR) at 6 months, no partial CgR at 12 months, no CCgR at 18 months, loss of CHR or CCgR previously achieved, new BCR-ABL mutation insensitive to imatinib, and emergence of new ACAs or progression to the AP/blast phase (BP).14,26 

Events were defined as treatment failure or permanent discontinuation of imatinib for any reason, including toxicity, patient refusal, or loss to follow-up.

Statistical analysis

All comparisons between the 2 different groups of patients were assessed with the Student t test and with Fisher exact test for categorical variables, as appropriate. Times to CCgR and MMolR were calculated from the date of start of treatment until the achievement of the first response. Overall survival (OS), progression-free survival (PFS), failure-free survival (FFS), and event-free survival (EFS) were calculated from the date of the first imatinib dose until death (OS), until progression to AP or BP or death (PFS), until failure or death (FFS), and until any event (EFS). Probabilities of CCgR, MMolR, OS, PFS, FFS, and EFS were estimated using the Kaplan-Meier method.27  Time to response and survival times were compared with the log-rank test.28  All analysis were performed according to the intention-to-treat principle. Multivariate logistic regression analysis was used to assess the relationship between various predictors of interest and response.

Results

Of the 559 patients enrolled into the GIMEMA CML WP studies CML/021, CML/022, and CML/023 (see details in “Patients”), 378 (68%) had at least 20 evaluable metaphases at diagnosis and were included in the present analysis and 181 had < 20 evaluable metaphases and were excluded from this study. In this way, we have avoided the inclusion of eventual cases with a small clone with ACAs in the group of cases without ACAs. However, no excluded case showed ACAs.

In addition, 357 patients showed the presence of t(9;22)(q34;q11) without additional abnormalities, and 21 patients (5.6%) showed clonal ACAs.

Detailed baseline characteristics of the 2 groups are presented in Table 1. The 2 groups, with and without ACAs, were similar for demographic and hematologic characteristics except for sex and percentage of peripheral blasts: the rate of male patients was 86% and 59% (P = .02) in patients with and without ACAs, respectively; the median percentage of peripheral blasts was 2.5% and 1% (P = .03) in patients with and without ACAs, respectively. The Sokal, Hasford, and European Treatment and Outcome Study risk score distributions were comparable. The proportion of patients treated with high-dose imatinib was similar in the 2 groups. No association of ACAs with variant Ph translocations and with der(9) deletions was observed.

Table 1

Comparison of patients' characteristics at diagnosis

CharacteristicPatients with ACAs (N = 21)Patients without ACAs (N = 357)P
Median age, y (range) 45 (24-74) 50 (18-84) .18 
Sex, male/female, N (%) 18/3 (86/14) 210/147 (59/41) .02 
Median spleen, cm (range) 4 (0-21) 2 (0-23) .10 
Median Hb level, g/dL (range) 11.8 (8.2-16.0) 12.0 (6.4-17.5) .77 
Median PLT count, 109/L (range) 406 (143-979) 346 (107-4920) .79 
Median peripheral blasts, % (range) 2.5 (1-8) 1 (0-10) .03 
Median eosinophils, % (range) 3 (0-6) 2 (0-15) .53 
Medin basophils, % (range) 2 (0-10) 2 (0-19) .82 
Sokal score, N (%)   .66 
    Low 7 (33) 140 (39)  
    Intermediate 6 (29) 134 (38)  
    High 8 (38) 83 (23)  
Hasford score, N (%)   .35 
    Low 6 (29) 159 (45)  
    Intermediate 13 (62) 173 (48)  
    High 2 (10) 25 (7)  
EUTOS score, N (%)   .20 
    Low 18 (86) 338 (95)  
    High 3 (14) 19 (5)  
Variant Ph translocations, N (%) 1 (5) 24 (7) 1.00 
Deletions der(9), N (%) 4 (19) 36 (10) .26 
Imatinib dose (mg), N (%)   .81 
    400 16 (76) 258 (72)  
    800 5 (24) 99 (28)  
CharacteristicPatients with ACAs (N = 21)Patients without ACAs (N = 357)P
Median age, y (range) 45 (24-74) 50 (18-84) .18 
Sex, male/female, N (%) 18/3 (86/14) 210/147 (59/41) .02 
Median spleen, cm (range) 4 (0-21) 2 (0-23) .10 
Median Hb level, g/dL (range) 11.8 (8.2-16.0) 12.0 (6.4-17.5) .77 
Median PLT count, 109/L (range) 406 (143-979) 346 (107-4920) .79 
Median peripheral blasts, % (range) 2.5 (1-8) 1 (0-10) .03 
Median eosinophils, % (range) 3 (0-6) 2 (0-15) .53 
Medin basophils, % (range) 2 (0-10) 2 (0-19) .82 
Sokal score, N (%)   .66 
    Low 7 (33) 140 (39)  
    Intermediate 6 (29) 134 (38)  
    High 8 (38) 83 (23)  
Hasford score, N (%)   .35 
    Low 6 (29) 159 (45)  
    Intermediate 13 (62) 173 (48)  
    High 2 (10) 25 (7)  
EUTOS score, N (%)   .20 
    Low 18 (86) 338 (95)  
    High 3 (14) 19 (5)  
Variant Ph translocations, N (%) 1 (5) 24 (7) 1.00 
Deletions der(9), N (%) 4 (19) 36 (10) .26 
Imatinib dose (mg), N (%)   .81 
    400 16 (76) 258 (72)  
    800 5 (24) 99 (28)  

Hb indicates hemoglobin; PLTs, platelets; and EUTOS, European Treatment and Outcome Study.

Cytogenetic analysis

In total, 21 CML cases with clonal ACAs were identified, and they are described in Table 2. We observed loss of Y chromosome in 9 patients (43%; no. 1-9), trisomy 8 in 3 patients (14%; no. 10-12), trisomy 19 in 2 patients (10%; no. 13 and 14), other different single abnormalities in 6 patients (28%; no. 15-20), and complex karyotype with double ACAs in only 1 patient (5%; no.21).

Table 2

Cytogenetic details and treatment response of the 21 patients with clonal ACAs

PatientSexKaryotype at diagnosis (% metaphases with ACAs)Der(9) deletionCgR 12mOutcome
Male 45,X,-Y,t(9;22)(q34;q11) (65) Yes CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No NoCgR Death 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No NE Failure 
Male 45,X,-Y,t(9;22)(q34;q11) (100) Yes PCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (33) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No PCgR CCgR 
10 Male 47,XY,+8,t(9;22)(q34;q11) (14) No mCgR Death 
11 Male 47,XY,+8,t(9;22)(q34;q11) (100) No PCgR Failure 
12 Male 47,XY,+8,t(9;22)(q34;q11) (100) No CCgR CCgR 
13 Male 47,XY,t(9;22)(q34;q11),+19 (100) No PCgR Drop-out 
14 Male 47,XY,t(9;22)(q34;q11),+19 (100) No CCgR Failure 
15 Male 46,XY,t(9;22)(q34;q11),del(20)(q11q13) (100) Yes CCgR CCgR 
16 Male 46,XY,del(7)(p21),t(9;22)(q34;q11) (100) No NE Failure 
17 Female 46,XX,t(1;7)(p36;q31),t(9;22)(q34;q11) (100) No CCgR CCgR 
18 Male 46,XY,t(6;11)(q13;q13)t(9;22)(q34;q11) (100) No CCgR CCgR 
19 Female 46,XX,t(7;19)(q21;p13),t(9;22;22)(q34;q11;q11) (100) No CCgR CCgR 
20 Male 46,XY,t(9;22)(q34;q11),t(X;13)(q13;q32) (100) Yes CCgR Failure 
21 Female 46,XX,t(2;14)(p13;q32),der(14)t(2;14)(p13;q32), t(9;22)(q34;q11) (100) No NE Failure 
PatientSexKaryotype at diagnosis (% metaphases with ACAs)Der(9) deletionCgR 12mOutcome
Male 45,X,-Y,t(9;22)(q34;q11) (65) Yes CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No NoCgR Death 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No NE Failure 
Male 45,X,-Y,t(9;22)(q34;q11) (100) Yes PCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (33) No CCgR CCgR 
Male 45,X,-Y,t(9;22)(q34;q11) (100) No PCgR CCgR 
10 Male 47,XY,+8,t(9;22)(q34;q11) (14) No mCgR Death 
11 Male 47,XY,+8,t(9;22)(q34;q11) (100) No PCgR Failure 
12 Male 47,XY,+8,t(9;22)(q34;q11) (100) No CCgR CCgR 
13 Male 47,XY,t(9;22)(q34;q11),+19 (100) No PCgR Drop-out 
14 Male 47,XY,t(9;22)(q34;q11),+19 (100) No CCgR Failure 
15 Male 46,XY,t(9;22)(q34;q11),del(20)(q11q13) (100) Yes CCgR CCgR 
16 Male 46,XY,del(7)(p21),t(9;22)(q34;q11) (100) No NE Failure 
17 Female 46,XX,t(1;7)(p36;q31),t(9;22)(q34;q11) (100) No CCgR CCgR 
18 Male 46,XY,t(6;11)(q13;q13)t(9;22)(q34;q11) (100) No CCgR CCgR 
19 Female 46,XX,t(7;19)(q21;p13),t(9;22;22)(q34;q11;q11) (100) No CCgR CCgR 
20 Male 46,XY,t(9;22)(q34;q11),t(X;13)(q13;q32) (100) Yes CCgR Failure 
21 Female 46,XX,t(2;14)(p13;q32),der(14)t(2;14)(p13;q32), t(9;22)(q34;q11) (100) No NE Failure 

PCgR indicates partial CgR; mCgR, minor CgR, NE, not evaluable; Failure, according to 2009 European LeukemiaNet criteria, described under “Definition of progression, failure, abd events”; and Drop-out, imatinib permanent discontinuation for any reason different from failure.

Major route abnormalities (trisomies 8 and 19) occurred in 5 of 21 cases (24%).

One patient (no.19) showed a variant Ph chromosome: t(9;22;22)(q34;q11;q11) that was characterized by chromosome banding and FISH analysis.

Deletion of der(9) chromosome was detected by FISH analysis in 4 cases (19%; no. 1, 7, 15, and 20): 2 cases with loss of Y chromosome, 1 case with del(20)(q11q13), and 1 case with t(X;13)(q13;q32).

In most patients, ACAs have been found in all the observed cells; only 3 patients (no. 1, 8, and 10) had additional abnormalities in a subclone (in 65%, 33%, and 14% of the metaphases, respectively).

Response to imatinib mesylate therapy and survival

The median follow-up was 58 months (range, 25-75 months) and 60 months (range, 2-81 months) in patients with and without ACAs, respectively. The response rates to imatinib are shown in Table 3. The cytogenetic and molecular response rates were uniformly lower in patients with ACAs: no significant differences were observed at the 12th month, but the overall CCgR and MMolR rates were significantly lower in patients with ACAs: 71% versus 89% (P = .03) and 67% versus 86% (P = .03), respectively. The responses were significantly slower in the group of patients with ACAs (Figure 1). In a multivariate logistic regression, the presence of ACAs retained its prognostic significance, when adjusted for other relevant variables (Table 4).

Table 3

Response to imatinib (patients were categorized by their response at the 12th month and by their best overall response)

ResponsePatients with ACAs, N = 21 (%)Patients without ACAs, N = 357 (%)P
CHR    
    Overall 21 (100) 350 (98) 1.00 
CCgR    
    12th mo 12 (57) 267 (75) .12 
    Overall 15 (71) 317 (89) .03 
MMolR    
    12th mo 10 (48) 205 (57) .50 
    Overall 14 (67) 306 (86) .03 
ResponsePatients with ACAs, N = 21 (%)Patients without ACAs, N = 357 (%)P
CHR    
    Overall 21 (100) 350 (98) 1.00 
CCgR    
    12th mo 12 (57) 267 (75) .12 
    Overall 15 (71) 317 (89) .03 
MMolR    
    12th mo 10 (48) 205 (57) .50 
    Overall 14 (67) 306 (86) .03 
Figure 1

Cytogenetic and molecular response. Kaplan-Meier analysis; estimates of time to CCgR (A) and of time to MMolR (B). Dotted line indicates presence of ACAs, and solid line indicates presence of only Ph chromosome.

Figure 1

Cytogenetic and molecular response. Kaplan-Meier analysis; estimates of time to CCgR (A) and of time to MMolR (B). Dotted line indicates presence of ACAs, and solid line indicates presence of only Ph chromosome.

Table 4

Multivariate logistic regression estimating the association between the presence of ACAs and the CCgR, considering other covariates in the model

CCgROdds ratioSEzP > z95% confidence interval
ACAs 0.2506491 0.1418693 −2.44 .014 0.082657-0.7600683 
Variant Ph 0.5733353 0.3446664 −0.93 .355 0.1764819-1.86259 
del(9) 2.417083 1.554654 1.37 .170 0.6851781-8.526674 
Sex 1.132707 0.3962182 0.36 .722 0.5706497-2.24836 
Hemoglobin 1.3555 0.1237197 3.33 .001 1.133466-1.621029 
Eosinophils 1.138051 0.100403 1.47 .143 0.9573391-1.352876 
Basophils 0.9109481 0.488844 −1.74 .082 0.8200029-1.01198 
Imatinib dose 0.8333311 0.3054995 −0.50 .619 0.4062251-1.709497 
Sokal score 0.9955652 0.2284137 −0.02 .985 0.6350055-1.560853 
CCgROdds ratioSEzP > z95% confidence interval
ACAs 0.2506491 0.1418693 −2.44 .014 0.082657-0.7600683 
Variant Ph 0.5733353 0.3446664 −0.93 .355 0.1764819-1.86259 
del(9) 2.417083 1.554654 1.37 .170 0.6851781-8.526674 
Sex 1.132707 0.3962182 0.36 .722 0.5706497-2.24836 
Hemoglobin 1.3555 0.1237197 3.33 .001 1.133466-1.621029 
Eosinophils 1.138051 0.100403 1.47 .143 0.9573391-1.352876 
Basophils 0.9109481 0.488844 −1.74 .082 0.8200029-1.01198 
Imatinib dose 0.8333311 0.3054995 −0.50 .619 0.4062251-1.709497 
Sokal score 0.9955652 0.2284137 −0.02 .985 0.6350055-1.560853 

Variant Ph indicates variant Ph translocations; and del(9), deletion of derivative chromosome 9.

The median time to CCgR was 7 and 6 months in patients with and without ACAs, respectively (P = .045). The median duration of cytogenetic response has not been reached in both groups: 3 of the 15 (20%) CCgR patients with ACAs and 27 of the 317 (8.5%) CCgR patients without ACAs subsequently lost the previously achieved CCgR; the estimated probability of survival without cytogenetic relapse was 79% and 90% (P = .118) in patients with and without ACAs, respectively. The median time to MMolR was 13 and 8 months in patients with and without ACAs, respectively (P = .006). The long-term outcome is reported in Figure 2. The estimated overall probabilities of EFS, FFS, PFS, and OS were 52% versus 68% (P = .096), 61% versus 76% (P = .062), 85% versus 89% (P = .453), and 89% versus 92% (P = .764) for patients with and without clonal ACAs, respectively. Even if all outcomes were inferior for patients with ACAs baseline, no difference versus patients without ACAs baseline was statistically significant. According to the type of cytogenetic abnormality, 9 cases showed loss of Y chromosome, whereas in 5 cases a major route abnormality (trisomy 8 and 19) was reported, in 6 cases a single different abnormality was reported, and in the last case 2 ACAs (Table 2) were reported: 7 of the 9 cases with loss of Y chromosome (no. 1-9) retrieved and maintained a CCgR (6/7 MMolR either); 2 of 5 cases showing a major route abnormality obtained a CCgR by 12 months, but only 1 patient maintained the response with a longer follow-up; 4 of the 6 cases with different single abnormalities obtained and maintained either a CCgR and a MMolR (2/6 failed imatinib); and 1 case with 2 ACAs (no. 21) discontinued imatinib therapy because of treatment failure at 6 months. However, because of the small number of patients with ACAs, the different prognostic significance of each specific cytogenetic abnormality was not assessable.

Figure 2

Long-term outcome. Kaplan-Meier analysis; estimates of EFS (A), FFS (B), PFS (C), and OS (D). Dotted line indicates presence of ACAs, and solid line indicates presence of only Ph chromosome.

Figure 2

Long-term outcome. Kaplan-Meier analysis; estimates of EFS (A), FFS (B), PFS (C), and OS (D). Dotted line indicates presence of ACAs, and solid line indicates presence of only Ph chromosome.

Discussion

At diagnosis, the presence of clonal ACAs may be observed in ∼ 5% of CP CML patients4–6 ; however, their appearance is mostly associated with disease evolution and their frequency is higher in late CP, AP (∼ 30%), and blast crisis (∼ 80%). The current standard treatment approach for newly diagnosed CML patients is based on TKIs, imatinib mesylate, the former standard of care, and the second generation TKIs nilotinib and dasatinib, recently registered as frontline treatments. There is much debate about the “best” treatment strategy, between more or less conservative approaches, considering imatinib or not as still a good option for most patients as the frontline treatment. The prognostic significance of the presence of clonal ACAs at diagnosis has been discussed in previous studies, but data on the outcome of CP CML patients with ACAs after therapy with frontline imatinib are limited. The available studies are usually case reports, small series, or large series but involving patients in different phases of disease, more often in AP and/or treated with different drugs (eg, interferon and TKIs).4,29–34  Reports suggested that, within different disease stages, ACAs did not influence the response to therapy30,34 ; indeed after second TKI therapy, the hematologic and cytogenetic response rates, OS and EFS were no different between patients in CP with CE and patients in CP without CE; but CE had a significant impact when associated with other features of AP.34  These findings are partially supported by a very recent study, in which only major route ACAs were associated with a negative impact.35  On the other hand, another observation reported that in early CP CML the presence of ACAs was one of the independent adverse predictors for PFS in the 6-months analysis and ACAs were present in 4 of the 6 patients who progressed within 1 year.7  The European LeukemiaNet recommendations provide a warning for CP CML patients with ACAs treated frontline with imatinib, suggesting that ACAs have impact on the outcome of CML,14  as they predict significantly for shorter PFS and OS.7  The presence of ACAs has been considered a feature of AP in some classifications of CML; however, the World Health Organization classification suggested to include ACAs as a criterion for AP only if they are not present at diagnosis.13 

In the present study, we report a large series of 559 early CP CML patients treated with only imatinib as frontline therapy within 3 clinical trials of the GIMEMA WP on CML.

Clonal ACAs occurred in 21/378 evaluable patients (5.6%), a frequency consistent with previous reports. We can confirm that ACAs are not frequently detected in early CP of CML.

None of the cytogenetic abnormalities observed was considered as constitutional, because of the type of abnormalities and/or the fact that such abnormalities disappeared in all patients who achieved a cytogenetic response. In our series the most frequent observed abnormality was the loss of Y chromosome (43%). The loss of Y chromosome is frequently associated with older age, and might be in some cases only a consequence of ageing. However, there are not univocal data on the significance of the loss of the Y chromosome in CP-CML.4,35–38  We considered this abnormality as ACA, differently from some other series published previously. In our cases, the loss of Y chromosome disappeared in all patients who finally reached a CgR, confirming that the abnormality was related to the hematologic disease.

The presenting features were substantially similar in the 2 groups with and without ACAs (Table 1), except for sex and the median percentage of peripheral blasts. The presence of ACAs seems more common in male patients, as in our series the loss of Y chromosome is the most frequent abnormality. As a matter of fact, the significant unbalance in favor of males patients with ACAs disappeared (P = .37) after exclusion of the 9 patients bearing the loss of Y chromosome. The median percentage of peripheral blasts was higher in the ACAs group: a slight difference most probably deprived of biologic and clinical meanings. Deletions of a sizable portion of the derivative chromosome 9 have been described in 10%-15% of CML patients and have been found more frequently in patients with variant Ph translocations,39–40  but no association has been described in patients with ACAs. However, a recent study41  asserted that deletions of der(9) do not influence the outcome of CML in early CP patients treated with imatinib as frontline therapy. In the present study, 4 of 21 patients (19% vs 10% without ACAs) showed deletions of der(9) by FISH, but the difference was not statistically significant.

Although the number of patients with clonal ACAs was relatively low, the presence of ACAs influences the response to imatinib therapy: the rates of CCgR and MMolR were significantly inferior to those of patients with only Ph translocation (Table 3) and the times to CCgR and MMolR were significantly longer in patients with ACAs (Figure 1).

Previous studies have suggested that achievement of CCgR on imatinib is a major prognostic factor for overall and progression free survival,11–12  and that early molecular response is predictive of long-term disease stability with lack of progression and durability of CCgR.42–44 

Furthermore, we observed a higher rate of response loss in the patients with clonal ACAs, but the difference was not statistically significant (data not shown). These differences in terms of responses, rate and rapidity, did not translate into different outcomes. In fact, the number of negative events was higher in patients with ACAs, but the corresponding EFS and FFS curves were not significantly different (P = .09 and P = .06, respectively; Figure 2). Moreover, the survival without progression to AP/BP and the OS probabilities were superimposable, and the higher number of failures did not foresee a higher propensity to progress, either for the low number of events overall or because some of the patients who failed have been rescued to response using second generation TKIs.

We were not able to investigate the differences concerning response rate or survival related to the different kinds of abnormalities, as we found only 3, 2, and 1 patient with trisomy 8, trisomy 19, and 2 ACAs, respectively; moreover, 6 patients showed 6 different single abnormalities that are not frequent in CML. However, our data suggest a worse outcome in patients with major route abnormalities (trisomy 8 and 19; Table 1, case no. 10-14), in according to a recent report,35  even if we have not observed any i(17q) and +der(22q) in our patients, differently from their cases. The only patient with complex karyotype, without major route ACAs, failed the treatment and discontinued imatinib therapy. The increased genomic instability may facility the emergence of a clone with malignant phenotype.

In a recent paper, other authors reported that loss of Y chromosome had a poor impact in patients in imatinib therapy, in terms of cytogenetic and molecular response, EFS, and OS.38  Our data, in agreement with a recent observation,35  do not suggest a worse prognosis in 9 patients with loss of Y chromosome.

ACAs may be found in all the cells, or they may be acquired in a subclone, thus defining a CE with worse outcome.30–31  In our series, no correlation is possible, because only 3 patients (no. 1, 8, and 10; Table 2) had abnormalities in a subclone: 2 patients with loss of Y chromosome are still in CCgR and 1 patient with trisomy 8 died in mCgR.

In conclusion, this large series of patients suggests that ACAs at diagnosis, although not frequently detected, have a negative impact in early CP CML patients treated with imatinib as frontline therapy. Our data confirm that patients with ACAs constitute a “warning” category, in terms of responses, and they suggest that these cases could require a close monitoring and treatment with second generation TKIs as frontline therapy. In agreement with recent observations,35  more intensive therapy should be considered in the patients showing major route abnormalities and complex karyotype.

The online version of the article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Acknowledgments

The authors thank Katia Vecchi for valuable assistance.

This study was supported by Associazione Italiana contro le Leucemie, i linfomi e i mielomi Bologna (BolognaAIL); Progetti di Ricerca di Interesse Nazionale (PRIN2007), University of Bologna; Fondazione del Monte di Bologna e Ravenna; and European LeukemiaNet.

Authorship

Contribution: S.L., F.C., and N.T. analyzed the data and wrote the manuscript; S.L., G. Marzocchi, C.B., L.Z., M.M., M.G.G., A.G., G.A., G.P., and P.B. performed the molecular cytogenetic analysis; I.I. performed the molecular analysis; F.C., G.G., G. Specchia, G.R.-C., E.A., A.Z., M.A.C., and F. Palandri enrolled the study patients and collected clinical data; F. Pane, G. Saglio, G. Martinelli, G.R., and M.B. designed and supervised the trials; and G.R., M.B., and N.T. supervised the study and gave final approval for submission.

Conflict-of-interest disclosure: F. Pane has received research support from Novartis, served as a consultant for Novartis and Bristol-Myers Squibb, and served on the Novartis speaker's bureau; G. Saglio did consultancy work for Novartis and Bristol-Myers Squibb and served on the speakers' bureaus of Novartis and Bristol-Myers Squibb; G. Martinelli served on the speakers' bureaus of Novartis, Bristol-Myers Squibb, and Pfizer; M.B. received research support from Novartis, Bristol-Myers Squibb, and Pfizer; did consultancy work for Novartis, Bristol-Myers Squibb, and Pfizer; and served on the Novartis speaker's bureau; and G.R. did consultancy work for Novartis and served on the speakers' bureaus of Novartis and Bristol-Myers Squibb. The remaining authors declare no competing financial interests.

A complete list of the members of the GIMEMA CML WP appears in the supplemental Appendix.

Correspondence: Nicoletta Testoni, Department of Hematology and Oncological Sciences “Sant'Orsola-Malpighi” Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; e-mail: nicoletta.testoni@unibo.it.

References

References
1
Rowley
 
JD
A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.
Nature
1973
, vol. 
243
 
5405
(pg. 
290
-
293
)
2
Jabbour
 
E
Kantarjian
 
H
Introduction: chronic myelogenous leukemia (CML).
Semin Hematol
2007
, vol. 
44
 
1 Suppl 1
(pg. 
S1
-
S3
)
3
Quintás-Cardama
 
A
Cortes
 
J
Molecular biology of bcr-abl1-positive chronic myeloid leukemia.
Blood
2009
, vol. 
113
 
8
(pg. 
1619
-
1630
)
4
Marktel
 
S
Marin
 
D
Foot
 
N
, et al. 
Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression.
Haematologica
2003
, vol. 
88
 
3
(pg. 
260
-
267
)
5
Sokal
 
JE
Gomez
 
GA
Baccarani
 
M
, et al. 
Prognostic significance of additional cytogenetic abnormalities at diagnosis of Philadelphia chromosome positive chronic granulocytic leukemia.
Blood
1988
, vol. 
72
 
1
(pg. 
294
-
298
)
6
Kantarjian
 
HM
Smith
 
TL
McCreddie
 
KB
, et al. 
Chronic myelogenous leukemia: a multivariate analysis of the associations of patients characteristics and therapy with survival.
Blood
1985
, vol. 
66
 
6
(pg. 
1326
-
1335
)
7
Marin
 
D
Milojkovic
 
D
Olavarria
 
E
, et al. 
European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor.
Blood
2008
, vol. 
112
 
12
(pg. 
4437
-
4444
)
8
O'Brien
 
SG
Guilhot
 
F
Larson
 
RA
, et al. 
Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia.
N Engl J Med
2003
, vol. 
348
 
11
(pg. 
994
-
1004
)
9
Baccarani
 
M
Saglio
 
G
Goldman
 
J
, et al. 
Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet.
Blood
2006
, vol. 
108
 
6
(pg. 
1809
-
1820
)
10
Druker
 
BJ
Talpaz
 
M
Resta
 
DJ
, et al. 
Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.
N Engl J Med
2001
, vol. 
344
 
16
(pg. 
1031
-
1037
)
11
Druker
 
BJ
Guilhot
 
F
O'Brien
 
SG
, et al. 
Five-Year follow-up of patients receiving imatinib for chronic myeloid leukemia.
N Engl J Med
2006
, vol. 
355
 
23
(pg. 
2408
-
17
)
12
de Lavallade
 
H
Apperley
 
JF
Khorashad
 
JS
, et al. 
Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis.
J Clin Oncol
2008
, vol. 
26
 
20
(pg. 
3358
-
3363
)
13
Cortes
 
J
Talpaz
 
M
O'Brien
 
S
, et al. 
Staging of chronic myeloid leukemia in the imatinib era. An evaluation of World Health Organization proposal.
Cancer
2006
, vol. 
106
 
6
(pg. 
1306
-
1315
)
14
Baccarani
 
M
Cortes
 
J
Pane
 
F
, et al. 
Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet.
J Clin Oncol
2009
, vol. 
27
 
35
(pg. 
6041
-
6051
)
15
Baccarani
 
M
Pane
 
F
Saglio
 
G
Monitoring treatment of chronic myeloid leukemia.
Haematologica
2008
, vol. 
93
 
2
(pg. 
161
-
169
)
16
Testoni
 
N
Marzocchi
 
G
Luatti
 
S
, et al. 
Chronic myeloid leukemia: a prospective comparison of interphase fluorescence in situ hybridization and chromosome banding analysis for the definition of complete cytogenetic response: a study of the GIMEMA CML WP.
Blood
2009
, vol. 
114
 
24
(pg. 
4939
-
4943
)
17
Hughes
 
T
Deininger
 
M
Hochhaus
 
A
, et al. 
Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results.
Blood
2006
, vol. 
108
 
1
(pg. 
28
-
37
)
18
Branford
 
S
Fletcher
 
L
Cross
 
NC
, et al. 
Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials.
Blood
2008
, vol. 
112
 
8
(pg. 
3330
-
3338
)
19
Müller
 
MC
Erben
 
P
Saglio
 
G
, et al. 
Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories.
Leukemia
2008
, vol. 
22
 
1
(pg. 
96
-
102
)
20
Shaffer
 
LG
Slovak
 
ML
Campbell
 
LJ
ISCN 2009: International System of Human Cytogenetic Nomenclature
2009
Basel, Switzerland
Karger AG
21
Mitelman
 
F
The cytogenetic scenario of chronic myeloid leukemia.
Leuk Lymphoma
1993
, vol. 
11
 
Suppl 1
(pg. 
11
-
15
)
22
Albano
 
F
Anelli
 
L
Zagaria
 
A
, et al. 
“Home-brew” FISH assay shows higher efficiency than BCR-ABL dual color, dual fusion probe in detecting microdeletions and complex rearrangements associated with t(9;22) in chronic myeloid leukemia.
Cancer Genet Cytogenet
2007
, vol. 
174
 
2
(pg. 
121
-
126
)
23
van Dongen
 
JJ
Macintyre
 
EA
Gabert
 
JA
, et al. 
Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia.
Leukemia
1999
, vol. 
13
 
12
(pg. 
1901
-
1928
)
24
van der Velden
 
VH
Hochhaus
 
A
Cazzaniga
 
G
, et al. 
Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects.
Leukemia
2003
, vol. 
17
 
6
(pg. 
1013
-
1034
)
25
Gabert
 
J
Beillard
 
E
van der Velden
 
VH
, et al. 
Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia–a Europe Against Cancer program.
Leukemia
2003
, vol. 
17
 
12
(pg. 
2318
-
2357
)
26
O'Brien
 
S
Berman
 
E
Moore
 
JO
, et al. 
NCCN task force report: tyrosine kinase inhibitor therapy selection in the management of patients with chronic myelogenous leukemia.
J. Natl Compr Canc Netw
2011
, vol. 
9
 
Suppl 2
(pg. 
S1
-
S25
)
27
Kaplan
 
ES
Meier
 
P
Nonparametric estimation from incomplete observations.
J Am Stat Assoc
1958
, vol. 
53
 (pg. 
457
-
481
)
28
Peto
 
R
Pike
 
MC
Armitage
 
P
, et al. 
Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II: analysis and examples.
Br J Cancer
1977
, vol. 
35
 
1
(pg. 
1
-
39
)
29
Zaccaria
 
A
Testoni
 
N
Valenti
 
AM
, et al. 
Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications.
Cancer Genet Cytogenet
2010
, vol. 
199
 
2
(pg. 
76
-
80
)
30
Schoch
 
C
Haferlach
 
T
Kern
 
W
, et al. 
Occurrence of additional chromosome abnormalities in chronic myeloid leukemia patients treated with imatinib mesylate.
Leukemia
2003
, vol. 
17
 
2
(pg. 
461
-
463
)
31
Cortes
 
JE
O'Dwyer
 
ME
Clonal evolution in chronic myelogenous leukemia.
Hematol Oncol Clin North Am
2004
, vol. 
18
 
3
(pg. 
671
-
684
)
32
Cortes
 
JE
Talpaz
 
M
Giles
 
F
, et al. 
Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy.
Blood
2003
, vol. 
101
 
10
(pg. 
3794
-
3800
)
33
O'Dwyer
 
ME
Mauro
 
MJ
Kurilik
 
G
, et al. 
The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML.
Blood
2002
, vol. 
100
 
5
(pg. 
1628
-
1633
)
34
Verma
 
D
Kantarjian
 
H
Shan
 
J
, et al. 
Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy.
Cancer
2010
, vol. 
116
 (pg. 
2673
-
2681
)
35
Fabarius
 
A
Leitner
 
A
Hochhaus
 
A
, et al. 
Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV.
Blood
2011
, vol. 
118
 
26
(pg. 
6760
-
6768
)
36
Johansson
 
B
Fioretos
 
T
Mitelman
 
F
Cytogenetic and molecular genetic evolution of chronic myeloid leukemia.
Acta Haematol
2002
, vol. 
107
 
2
(pg. 
76
-
94
)
37
Deininger
 
MW
Cytogenetic studies in patients on imatinib.
Semin Hematol
2003
, vol. 
40
 
2 Suppl 2
(pg. 
50
-
55
)
38
Lippert
 
E
Etienne
 
G
Mozziconacci
 
MJ
, et al. 
Loss of Y chromosome in Philadelphia-positive cells predicts a poor prognosis of chronic myeloid leukaemia patients to imatinib mesylate therapy.
Haematologica
2010
, vol. 
95
 
9
(pg. 
1604
-
1607
)
39
Marzocchi
 
G
Castagnetti
 
F
Luatti
 
S
, et al. 
Variant Philadelphia translocations: molecular cytogenetic characterization and prognostic influence on frontline imatinib therapy, a GIMEMA Working Party on CML analysis.
Blood
2011
, vol. 
117
 
25
(pg. 
6793
-
6800
)
40
El-Zimaity
 
MM
Kantarjian
 
H
Talpaz
 
M
, et al. 
Results of imatinib mesylate therapy in chronic myelogenous leukaemia with variant Philadelphia chromosome.
Br J Haematol
2004
, vol. 
125
 
2
(pg. 
187
-
195
)
41
Castagnetti
 
F
Testoni
 
N
Luatti
 
S
, et al. 
Deletions of the derivative chromosome 9 do not influence the response and the outcome of chronic myeloid leukemia in early chronic phase treated with imatinib mesylate: GIMEMA CML Working Party analysis.
J Clin Oncol
2010
, vol. 
28
 
16
(pg. 
2748
-
2754
)
42
Cortes
 
JE
Talpaz
 
M
O'Brien
 
S
, et al. 
Molecular response in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate.
Clin Cancer Res
2005
, vol. 
11
 
9
(pg. 
3425
-
3432
)
43
Iacobucci
 
I
Saglio
 
G
Rosti
 
G
, et al. 
Achieving a major molecular response at the time of a complete cytogenetic response (CCgR) predicts a better duration of CCgR in imatinib-treated chronic myeloid leukemia patients.
Clin Cancer Res
2006
, vol. 
12
 
10
(pg. 
3037
-
3042
)
44
Hughes
 
TP
Hochhaus
 
A
Branford
 
S
, et al. 
Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS).
Blood
2010
, vol. 
116
 
19
(pg. 
3758
-
3765
)

Author notes

*

S.L. and F.C. contributed equally to this work.