Abstract

Abstract 4225

Despite the progress in the treatment of acute myeloid leukemia (AML) achieved in the last decades, a significant number of patients are still refractory to or relapse after conventional chemotherapy regimens. Therefore it is necessary to develop novel alternative approaches. Immunotherapy with T cells genetically modified to express chimeric antigen receptors (CARs) represent a valid option in this sense. CARs are artificial T-cell receptors constituted by a specific antigen-binding domain, and a signaling region, that, upon antigen recognition, leads to T-cell activation, and lysis of the target cells. AML is a potential optimal target for CAR strategy because of the over-expression of a number of surface antigens like CD33, CD123. Since CD33 is also expressed on normal hematopoietic stem/progenitors cells (HSPCs) resulting in a potential severe impairment of normal myelopoiesis, CD123 has recently emerged as new potential attractive molecules based on its differential expression pattern, being still wildly overexpressed by AML population, and at the same time less expressed on HSPCs.

Here we describe the in vivo efficacy and the safety of this approach based on Cytokine-Induced-Killers (CIK) cells genetically modified to express CAR molecules specific for the CD33 or CD123 antigen.

Once injected into low-level AML engrafted NSG mice (median of hCD45+CD33+ 0.6% before treatment), genetically modify T cells had a potent antitumor effect. Indeed, the bone marrow of control untreated animals or mice treated with un-manipulated CIK cells, was infiltrated by leukemic cells (86% and 81% leukemic engraftment), while in 7/8 anti-CD33-CD28-OX40-ζ and 8/10 anti-CD123-CD28-OX40-ζ treated mice we couldn't detect any AML cells.

Similar results have been obtained when the treatment via T cell injection start when high AML burden has been obtained (median of hCD45+CD33+ 70% before treatment). One week after the last CIK's injection the level of AML engraftment was 96%, 87%, 0.35% and 0.34% for untreated mice, mice treated with un-manipulated CIK cells and with anti-CD33-CD28-OX40-ζ and anti-CD123-CD28-OX40-ζ transduced CIK-cells respectively. We performed secondary transplantation on the residual AML cells present in these animals and mice were treated again with transduced CIK cells. Residual AML cells were still sensitive to CARs approach, leading once again to an almost complete eradication of the disease (median level of hCD45+CD33+ engraftment was 98%, 0.02% and 0.04% respectively for untreated mice, anti-CD33-CD28-OX40-ζ and anti-CD123-CD28-OX40-ζ transduced CIK-cells).

Furthermore, a fundamental issue was to determine the safety profile of such approach against normal hematopoietic precursors.

In untreated mice injected with primary cord blood derived CD34+ cells the level of engraftment of hCD45 compartment was 42% whilst in mice treated with un-manipulated, anti-CD33-CD28-OX40-ζ or anti-CD123-CD28-OX40-ζ transduced CIK-cells the levels of human compartment was 40%, 11.7% and 26.3% respectively. Moreover when we consider specifically the CD34+CD38- compartment, enriched in HSC, the level of engraftment was 1.92%, 1.02%, 0.55% and 0.83%. Secondary transplantations are now ongoing to give a more complete profile about the remaining HSC repopulating capability after treatment. To more closely mimic a physiological context, similar experiments are ongoing using mice engrafted with normal adult bone marrow instead of umbilical cord blood.

These experiments should offer relevant information concerning the efficacy and safety of the proposed strategy particularly in the context of minimal residual disease in high-risk transplanted AML patients. Moreover CAR approach could be potentially used to treat patients resistant to conventional chemotherapeutic approaches or for whom high dose chemotherapy treatment could not be proposed.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.