Abstract

Abstract 3546

Because MSC support the growth and the differentiation of normal hematopoietic stem cells we hypothesized that MSC might also support leukemia cells, in particular leukemia stem cells (LSC) in vitro. We cultured blast cells from patients with acute myelogenous leukemia (AML) in liquid medium to study persistence of stem-cell-like and differentiated leukemia cell populations by flow cytometry, with and without MSC and additional growth factors.

Cryopresrerved peripheral blood mononuclear cells (PBMC) were obtained from 6 AML patients (mean Age 47, range 23–74). Leukemia blasts were isolated by sorting live (propidium iodide (PI)-negative) CD34+ lineage (CD2+, CD3+, CD14+ and CD19+) -negative cells using a FACS ARIA II cell sorter (BD). Sorted blasts (2.5 ×105 cells) were co-cultured with an equal number of irradiated MSC derived from healthy donor bone marrow in RPMI medium supplemented with 10% human serum, with or without a human cytokine (CYTO) mixture (50 ng/ml interleukin 3, 150 ng/ml stem cell factor, and 150ng/ml Flt-3 ligand). MSC were replenished every two weeks. The phenotype of cultured cells was analyzed weekly using fluorescently-conjugated monoclonal antibodies against CD34, CD38, and CD45, plus the lineage panel and a dead cell exclusion dye Cell cycle analysis with Hoeschst 33342 and Pyronin Y was performed on cells co-stained with CD34, CD45 and PI.

Primary leukemia samples were phenotypically heterogeneous with respect to proportions of cells (co-)staining for CD34 and CD38 as previously reported: three samples showed CD34+CD38- predominance (LSC-like leukemia), and three were CD34+CD38+ (common myeloid progenitor (CMP)-like leukemia). LSC-like leukemia maintained viable CD34+CD38- cells for at least 6 weeks when co-cultured with MSC alone, in contrast to cultures with cytokines or medium only which showed rapid decline in the LSC populations and no prolonged maintenance of viable cells (p=0.0005) (Figure, left panel). CMP-like leukemia maintained their CD34+CD38+ phenotype when co-cultured with MSC alone but persistence of this subset was not significantly different from the other culture conditions (p=0.5) and no culture remained viable after 4 weeks (Figure, right panel). Cell cycle analysis showed that co-culture with MSC maintained CD34+ blasts in G0 significantly more than other culture conditions (P<0.0001).

We conclude that MSC support the maintenance of a leukemia stem cell phenotype in a long- term (6 week) in vitro culture system. The differential capacity of MSC to support LSC- like and CMP- like leukemia may be associated with the different frequency of leukemia initiating cells within each leukemic blast population. NSG mice xenotranplant model experiments are ongoing to confirm this hypothesis. Co-culture of LSC with MSC represents a simple approach to maintain LSC in vitro and could be utilized to screen the drug targeting LSCs. Further study of the effect of MSC on LSC would elucidate a potential mechanism whereby the marrow microenvironment serves as a reservoir of persisting leukemia after remission induction chemotherapy.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.