Abstract

Abstract 3250

Chronic inflammation is a salient feature of human sickle cell disease (SCD) and transgenic-knockout sickle (BERK) mouse model. Although tissue ischemia is the primary instigator of hypoxia-inducible factor (HIF) activation, a number of inflammatory factors/pathways and oxidative stress can potentially induce expression of HIF-1α. Increased oxidative stress and inflammation are implicated in the activation of HIF-1α under normoxic conditions. HIF can trigger transcription of genes for vasoactive molecules such as vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1) and endothelin, which are implicated in the pathophysiology of SCD. We hypothesize that, in SCD, inflammation coupled with nitric oxide (NO) depletion will induce expression of HIF-1α. To this end, we have examined the expression of HIF-1α in normoxic BERK mice expressing exclusively human α- and βS- globins, and evaluated the effect of HbF in BERK mice (i.e., <1.0%, 20% and 40% HbF). We have previously shown that HbF exerts anti-sickling and anti-inflammatory effects (Kaul et al. J Clin Invest, 2004; Dasgupta et al. Am J Physiol, 2010). Here, we show that HIF-1α is expressed in BERK mice under normoxic conditions (i.e., normal hemoglobin oxygen saturation levels). In BERK mice expressing HbF, HIF-1α expression decreased concomitantly with increasing HbF, commensurately with increased NO bioavailability, and showed a strong inverse correlation with plasma NO metabolites (NOx) levels. Reduced HIF-1α expression in BERK mice expressing HbF was associated with decreased HO-1 and VEGF expression, and reduced serum endothelin-1 (ET-1) levels, which are among the target vasoactive molecules of HIF-1α. Furthermore, the commensurate decrease in HIF-1α expression with increase in HbF levels in BERK mice was accompanied by a distinct decrease in soluble (s) forms of endothelial activation markers such as sP-selectin and vascular cell adhesion molecule-1 (sVCAM-1). Notably, arteriolar dilation, enhanced volumetric blood flow and low blood pressure in normoxic BERK mice all showed a trend toward normalization with the introduction of HbF. Also, arginine treatment reduced HIF-1α expression as well as ET-1 levels in normoxic BERK mice, supporting a role of decreased NO bioavailability in HIF-1α activation. The present in vivo studies show that reduced inflammation and increased NO production in normoxic BERK mice (expressing HbF or treated with arginine) are distinctly associated with suppression of HIF-1α activation and inhibition of vasodilators, resulting in improved microvascular and hemodynamic parameters in the BERK model of sickle cell disease. The unique feature of inflammation in SCD is that it can be ameliorated by increased HbF, thereby coupling HbS polymerization/sickling to NO depletion, HIF-1α expression and inflammation in this disease.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.