Abstract 1589


Acquired potentially N-glycosylation sites are produced by somatic hypermutation (SHM) in the immunoglobulin (Ig) variable region. This phenomenon is produced in ∼9% of normal B-cells and seems to be related to certain B-cell lymphoproliferative disorders (B-LPDs) such as follicular lymphoma (FL, 79%), endemic Burkitt lymphoma (BL, 82%) and diffuse large B-cell lymphoma (DLBCL, 41%). These data suggest that new potential N-glycosylation sites could be related to germinal center B (GCB)-LPDs. By contrast, in other B-LPDs, such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), MALT lymphoma, Waldenström macroglobulinemia (WM) or multiple myeloma (MM), these modifications have not been analyzed in deep.


To evaluate the acquisition of potential N-glycosylation sites in B-LPDs, including immunohystochemical DLBCL subtypes (GCB and non-GCB) and specific non-GCB-LPDs, such as hairy cell leukemia (HCL), splenic marginal-zone lymphoma (SMZL), CLL, MCL, ocular extranodal marginal zone lymphoma (OAEMZL), MM and WM.


A total of 953 sequences (203 from our group and 750 previously published sequences) of B-LPDs were included. Diagnosis distribution was as follows: DLBCL (n=235), MCL (n=235), CLL (n=166), MM (n=96), OAEMZL (n=82), SMZL (n=68), WM (n=38) and HCL (n=33).


Acquired N-glycosylation sites were counted according to the sequence Asn-X-Ser/Thr, where X could be any amino acid except Pro. Natural motifs in germline sequences of IGHV1–08, IGHV4–34 e IGHV-5a were not considered. Fisher test was used to perform comparisons between groups. To distinguish DLBCL biological subtypes (GCB and non-GCB DLBCL), Hans' algorithm was used.


A total of 83 out of the 235 DLBCL cases acquired at least a new N-glycosylation site, a higher value than in normal B-cells (35% vs. 9%, p<0.0001). Higher incidence of these motifs in the group of GCB as compared to non-GCB DLBCL were observed (52% vs. 20%, p<0.0001). Those cases diagnosed of HCL, CLL, MCL, MM, WM, OAEMZL and SMZL presented a reduced number of new N-glycosylation sites, showing similar values than normal B-cells (range 3–18%, p=ns).


We described for the first time the pattern of N-glycosylation in HCL, SMZL, OAEMZL and in the immunohystochemical DLBCL subtypes, where the GCB-DLBCL showed a higher number of new N-glycosylation sites with respect to non-GCB DLBCL and other non-GCB-LPDs. The presence of novel N-glycosylation sites in FL, BL and in GCB-DLBCL strongly suggests that these motifs are characteristic of the germinal center B-LPDs.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.